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Abstract

Using geometrical invariants we classify those pure injective mod-
ules over a commutative valuation domain which are envelopes of one
element.

1 Introduction

The problem of classification of pure injective modules over a commutative
valuation domain (CVD) was posed in the book of Fuchs and Salce [2,
Probl. 11]. A complete description of indecomposable pure injective modules
over a CVD is due to Ziegler [11]. So the main difficulty in the above
mentioned classification is provided by the so-called superdecomposable pure
injective modules, where a module M is called superdecomposable if M does
not contain an indecomposable direct summand.

Superdecomposable pure injective modules over a commutative valuation
domain (CVD) were first mentioned in [2, Ch. 11]. But, as was noticed later,
even the existence of these had not been proved there. The first complete
proofs appeared in Puninski [5] and Salce [9]. In particular from [5] it follows
that over a CVD V a superdecomposable pure injective module exists iff V'
does not have Krull dimension (in the sense of Gabriel and Rentschler) and
a similar criterion was found in [9].

By Prest [8, Ch. 4], every element m of a pure injective module M over
any ring is contained in a (unique) “minimal” direct summand N (m) of M.
Also every pure injective module is a pure injective envelope of a module
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@ier N (m;). So the classification of pure injective modules of the form N (m)
is an essential ingredient in a solution of the general classification problem.

In this paper, using geometrical invariants, we classify pure injective
modules N(m) over a CVD V. It is known (see indicator functions in |2,
Ch. 11] or [5]) that to every element m in a pure injective module M over
a CVD V one can assign a function f : I' — r (T" is a positive cone of the
valuation group of V and T' is its completion by cuts) such that N(m) is
completely determined by f. Of course different functions could lead to the
same pure injective module.

We describe (geometrically) an equivalence relation ~ on functions such
that f ~ g iff the corresponding modules N(f) and N(g) are isomorphic.
From this follows an easy description of a decomposition N(f) = N(g) ®
N(h) in terms of these functions which yields that N(g) and N(h) do not
have any direct summand in common (model theorists say “orthogonal” in
this case).

As a direct consequence of this result we prove that for every module
N(m), its endomorphism ring S = End(/N(m)) is abelian regular after fac-
torization by its Jacobson radical Jac(S). By Zimmermann-Huisgen and
Zimmermann [12, Thm. 9] for every pure injective module M over any ring
with S = End(M), S/ Jac(S) is a von Neumann regular right self-injective
ring and idempotents can be lifted modulo Jac(S). We show that for every
pure injective module M over a CVD, S/ Jac(S) is of type I in the termi-
nology of Goodearl [4, Ch. 10]. Also ¢M is a Bezout module, i.e. the sum
of two cyclic S-submodules of M is a cyclic module. Note that an essen-
tial part of the arguments in [6] was to prove that for every pure injective
module M over a CVD, gM is a distributive module.

The above result gives also the possibility for a direct application of the
well developed theory of nonsingular injective modules over a von Neumann
regular ring. Unfortunately we are not able to describe clearly a connection
between the list of invariants given by Goodearl’s theory and our geometrical
description. So this is the task for future.

2 Preliminaries

A commutative valuation domain (CVD) V is a commutative domain whose
ideals are linearly ordered by inclusion. This means that for every a,b € V,
either a € bV or b € aV holds. For instance Z ) (the localization of the
integers Z at a prime ideal pZ) is a CVD. For elements a,b of a CVD V



we put ¢ < bif bR C aR and a < b if bR C aR. This order corresponds to
a natural order on integers: say, for p,p*> € Z (p)» We have p < P2,

Since every CVD V is a local ring, the set of noninvertible elements of
V coincides with its Jacobson radical Jac(V'), and R\ Jac(R) = U(R) is the
set of units of V. For a,b € V we write a ~ b if aR = bR which is clearly
the same as a < b < a or a = bu, u € U(V). Factorizing V' by ~ we obtain
an ordered abelian semigroup (I'(V), <) with cancellation and a natural
map (evaluation) a — v(a) € I'(V) such that v(ab) = v(a) + v(b) holds for
0 # a,b € V. The largest element of I'(V') is given by v(0) (and one often
writes oo instead) and the smallest element of I'(V') is v(1). In fact I'(V)
can be converted into the ordered abelian group by the usual procedure, but
we do not need this fact in the paper. For instance for V' = Z,, I'(V) is
(ordered) isomorphic to (IN, +, <).

A cut on T'(V) is an arbitrary partition I'(V) = AU B such that A # (),
and B is a filter on I'(V'), i.e. b € B and b < ¢ implies ¢ € B. Then A is
clearly an ideal of T(V), i.e. a € A and b < a yields b € A. The set I' of
cuts on I' can be linearly ordered by the rule (A,B) < (A",B')if A C A’
(equivalently B’ C B). There is a natural embedding T" — I where a € T
goes to the cut [ =i(a) = {be ' | b < a} and B(l) = '\ A(l). For instance
1(0) is the largest cut oo with A(cc) =T.

For background in the model theory of modules the reader is referred
to M. Prest’s book [8]. For instance a module M is pure injective if it is
injective with respect to pure embeddings. As with injective envelopes, every
module M has a unique pure injective envelope PE(M). A pp-formula is an
existentially quantified formula ¢(z1,...,2,,) “there exists § = (y1,...,Yk)
such that yA = ZB”, where A is a k x [ and B is a m X [ matrix over a ring.
We say that ¢ is satisfied by a tuple m € M, written M = p(m), if there
exists a tuple n € M such that nA = mB. Every pp-formula ¢(z) defines
on M a pp-definable subgroup p(M)={m € M | M |= p(m)} and (M) is
even an S = End(M)-submodule of M (hence a submodule of M if the ring
is commutative). If ¢, are pp-formulae we say that ¢ implies v, written
@ — 1, if for any module M, o(M) C (M).

Given m € M, a pp-type pppr(m) is a collection of pp-formulae {¢ | M =
©(m)}. A pp-type can be also described as a set of pp-formulae that is closed
via finite conjuctions and implications. Given a pp-type p, there is a unique
“minimal” pure injective module (N (p),m) such that ppy,) (m) = p. For
instance N (p) is a direct summand of every pure injective module realizing

p.
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3 Geometrical description of pp-types

Since we will use only pp-formulae of a very special kind, let us describe
them more explicitly. A divisibility formula is a formula a | x (there exist y
such that ya = x), hence it defines the submodule Ma in any V-module M.
Clearly for a < b € V we have b | x — a | = and the converse is also true.
An annihilator formula is a pp-formula zb = 0, b € V and it defines in every
module M the submodule (zb = 0)(M) = {m € M | mb = 0}. Similarly
annihilator formulae over a CVD V form a chain, where xa = 0 — b =0
iff a <b.

It is not difficult to see that the sum of pp-formulae a | x + b = 0
is a pp-formula ab | xb which defines in a module M the submodule (ab |
xb)(M) = {m € M | mb € Mab}. To every pp-formula ab | zb we assign
a point (b,a) of the plane I' x ', where the divisibility formula a | x goes
to the point (1,a) on the y axis and an annihilator pp-formula b = 0 goes
to the the point (b,1) on the x axis. It follows from [5] that implication
among pp-formulae ab | b, a,b € V acts “right and down”, i.e. the set of
consequences of a pp-formula ¢ is contained in the angle with ¢ on the top
(see Figure 1 on the left).

Also the above decomposition shows that the sum of two pp-formulae
ab | zb and cd | zd can be drawn as in Figure 1 on the right.

The lattice of all pp-formulae over a CVD is generated by the two chains
just described, hence it is distributive. Every 1-pp-formula over V' is equiv-
alent to a finite conjuction of pp-formulae ¢; = a;b; | zb;. Moreover every
implication among them is “free” meaning that A ;p; — ¢ = ab | xb iff
;i — ¢ for some i. Also every pp-formula ¢(x1,...,x,) over V is equivalent



Figure 2:

to a finite conjunction of (divisibility) formulae a | zby +. ..+ by, a,b; € V.

It follows that every pp-type p(x) over V' is uniquely determined by pp-
formulae ab | zb € p, i.e. by some subset of the plane I' xI". Let us make this
description more precise. Let p = p(x) be a pp-type (in one free variable)
over a CVD V. We construct from p a function f(p) : I' — T' by setting
A(f(b)) ={a €T :ab| xb € p}. For instance A(f(b)) = oo iff zb =0 € p.
Then (see [7, Ch. 12]) 1) f is nondecreasing; 2) f(1) # oo and 3) f(0) = occ.
Moreover there is 1-1 correspondence between such functions and 1-pp-types
over a CVD V. Thus we obtain a geometrical representation of every 1-pp-
type p as the graph of the function f(p). Here (see Figure 2 on the left) the
positive part p* of p is under the graph of f(p), and the negative part p~ is
over f(p).

A pp-type p is called indecomposable if the module N(p) is indecompos-
able and p is superdecomposable if N(p) is a superdecomposable module. By
[1, p. 162] in terms of this description p is indecomposable iff f(p) is a one
step ladder (see Figure 2 on the right). On the level of pp-formulae that
means that ab | b € p implies either a | x € p or b =0 € p.

The property of p being superdecomposable can also be reformulated in
purely geometrical terms (see [7, Ch. 12]). Precisely p is superdecomposable
iff for every pp-formula ¢ = ab | b € p~, there is a rectangle with ¢ at
its left upper corner such that only the lower right corner of it is in p* (see
Figure 3 on the left).

If a superdecomposable pure injective module exists, I' must contain a
copy of the ordered set of rationals (®, <). For instance if I" is a dense linear
order (for every a < b €T, a < ¢ < b for some ¢), then the diagonal y = «
(i.e. ab| zb € p iff a < b) is such.
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4 Isomorphism criterion for N(p)

Let p(z) be a pp-type over a CVD V. In this section we describe the pp-types
q that are realized in N(p).

Let g,r be pp-types over V. We say that ¢ and r are equivalent over a
pp-formula ¢ if ¢ € ¢, r~ and for every pp-formula 1 such that ¢ — 1,
Y € qiff Y € r (so g and r look similar over ¢). Geometrically that means
that the @-neighborhoods of ¢ and r coincide (see Figure 3 on the right).

Let p,q be pp-types over V, ¢ = ab | xb, ¥ = cd | xd such that ¢ €
p~, ¥ € ¢q—. We say that -neighborhood of ¢ is obtained by translation
of the -neighborhood of p, if ab = cd (i.e. wv(a) + v(b) = v(c) + v(d))
and the former is obtained from the latter by a translation along the line
v(z) +v(y) = v(a) +v(b) (see Figure 4 on the left).

The following proposition is a criterion for: N(q) is a direct summand
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of N(p).

Proposition 4.1 Let p,q be 1-pp-types over a commutative valuation do-
main V. Then q is realized in N(p) iff for every ¢’ = a't/ | zb/ € q~ there
exists p = ab | xb € ¢~ and ) € p~ such that ¢’ — ¢ and the -neighborhood
of p is obtained from the p-neighborhood of ¢ by a translation along the line
v(z) +v(y) = v(a) +v(b).

In order to clarify this condition, let us consider an example. Let p be
the pp-type given by the line y = x and let ¢ be given by the line y = x+2 as
shown in Figure 4 on the right (we assume that I" looks like the non-negative
rationals or reals). Then ¢ is realized in p, i.e. N(q) is a direct summand of
N(p) but N(p) is not a direct summand of N(q), in particular these modules
are nonisomorphic. Indeed, if (b,a) € ¢~ then clearly (b+ 1,a —1) € p~.
On the other hand no neighborhood of (0,1) € p~ can be translated to an
isomorphic neighborhood of g.

Note that if m € N(p) is a realization for p and r € V is such that
v(r) = 2, then the pp-type of mr in N(p) is ¢. In particular there is a
pure embedding N(q) — N(p) over mr whose image is a direct summand
of N(p). Nevertheless (see below) under projection to this direct summand,
the image of m has pp-type not equal to q.

For pp-types p and ¢ as shown in Figure 5 on the left, N(p) = N(gq) but
we should first move ¢’ and only then apply a translation.

Proof. Let us prove the necessity. To distinguish p and ¢ we will assume
that p = p(z) and ¢ = ¢(y). Since q is realized in N(p), then (see [8, Ch. 6])



¢ is maximal over p, i.e. there is a pp-type 7(y, z) which is consistent with
p(z) Uq(y) (i.e. no formula of p~ or ¢~ is a consequence of r Up(x) Uq(y)),
and for every ¢(y) € ¢~ there is ¥(z) € p~ such that ¢ Ur — ).

Let ¢' = 't/ | yb' € q—. Then there are pp-formulae 6(y,z) € r and
() € p~ such that ¢’ A — 1. We may assume that 6 = Aja; | 2b; + ye;,
a;,bi,c; € V and ¢ = a | xb. By the common denominator theorem [7,
Ch. 10], this implication can be decomposed as:

@ =dt |y = dVglybg—alyby,
where a'b'g = ua,
0; = a; | ybi + xci — aigi | ybigi + xcigi — a | ybigi + xcigs,

where a;g; = gia (we have obtained a common denominator a),

Oo'NO—a y(z bigi +b'g) + x(z cigi)

and the last formula implies a | zb in view of Y b;g; +V'g = sa and Y ¢;9; =
b+ ta.

We set 0" = a | y(>_bigi — sa) + (> cigi — ta), i.e. 8 =a | yb'g+ xb.
Then 6 — 0" hence we may assume that § = 6'. Also ¢’ — ¢ = a | ybg
and ¢ € ¢~ (otherwise r is not consistent with p U ¢). Then all formulae
oly)=alytgeq, 0 (x,y) =a|ytg+aberand P(x) =a|zbep are
on the same line v(x) + v(y) = v(a).

Let us prove that the p-neighborhood of ¢ and the -neigborhood of p
are isomorphic via this line. Indeed if ¢'(y) € ¢~ is in the neighborhood of
©, then the implication ¢ — ¢’ can be decomposed in two steps: right and
then down (see Figure 5 on the right). In ring language this means that
we multiply @ and b'g by t € V and then we divide at by an element of V
moving to the line v(x) + v(y) = v(a’). Repeating this for § and ¢ we get
formulae 6'(y,z) and ¢’ on the same line, where, since § — ¢, 0’ € r. If
' € p, then 0/ A — ¢/ yields ¢’ € r,ie. ¢ € q, a contradiction. Arguing
similarly for the pp-formula ¢’ € ¢, we get the required isomorphism.

Let us prove sufficiency. A formula 0(y,z) = a | yb + zc will be called
connecting, if p(y) = a | yb € ¢7, Y(x) = a | xzc € p~ and the ¢-
neighborhood of ¢ and the -neighborhood of p are isomorphic along the
line v(x) 4+ v(y) = v(a). The projections ¢(y), ¥(x) will be also called con-
necting formulae. For connecting formulae ¢(y), ¢’ (y) € ¢~ set ¢ ~ ¢ if
¢+ ¢’ € ¢, hence the isomorphism of neighborhoods of ¢ and p can be
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extended to a larger ¢”-neighborhood of ¢ (see Figure 6 on the right). We
will use the same symbol ~ for the transitive closure of this relation.

Now we construct a pp-type 7(y,z) in the following way. Choose a
representative 6(y, x) from every equivalence class of ~ and multiply it by
moving according to the definition of ~. Now add p(z) U ¢(y). It is almost
evident that this type is consistent with pUq and has the desired properties
(there is no interference between formulas in different ~-classes exept what
is obvious, i.e. that given by pUgq). O

Note that (see [3, Cor. 2]) pure injective modules M and N are isomor-
phic iff M is a direct summand of N and N is a direct summand of M.
Thus Proposition 4.1 answers the question of when modules N(p) and N(q)
are isomorphic.

Nevertheless it is not easy to describe the shapes which a function could
have in a given equivalence class. We say that a function f is rigidif N(f) =
N(g) yields f = g. For instance the answer to the following question seems
to depend on the existence of a kind of fractal structure.

Question 4.2 Let V' be a commutative valuation domain such that I'(V') =
Q*. Is it true that the function y = x is rigid ¢

5 Decompositions of N(p)

Let N(p) be a pure injective module over a CVD, where m € N(p) realizes p.
Assume that N(p) = N1@® N» and that m = mq+mg via this decomposition.
Then for ¢ = ppy(p)(Mm1), 7 = PPN (p) (m2) by [8, Ch. 4] we have N1 = N(q),
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Figure 7:

Ny = N(r) and clearly p = ¢ Nr. We will refer to such a decomposition of
N(p) (and of p) as canonical.
Let us refine Proposition 4.1 for a canonical decomposition of N(p).

Lemma 5.1 Let p,q,r be pp-types over a CVD V' such that N(p) = N(q) ®
N(r) is a canonical decomposition. Then for every ¢ = da’' | xb' € q~ there
erists 1 = a | xb € ¢~ Nr* such that ¢ — 1 and q ~ p over v (see Figure 7
on the left).

Proof. Let m € N = N(p) realize p and let the decomposition N(p) =
N(q) ® N(r) induce a decomposition m = n + k. Thus ¢(y) = pp(n),
r(z) = pp(k) and p=gnNr.

Arguing as in the proof of Proposition 4.1, we find ¢’ =a | yb € ¢~ and
O(y,z) = a | yb+ xc such that ¢ — ¢, N(p) E 0(n,m) and ¥(z) = a | zc €
p~. Projecting 6(n,m) onto N(r) we get ¢(z) € r*. Since ¢(z) € p~, we
have ¥(y) € ¢~

Let us prove that ¢ ~ p over 1. Indeed let ¢y — 7. If ® € p, then (since
p=qNr)meEq. Let m € q. Since ¢ € r and p — 7, m € r. Thus (adding)
we get ™ € p.

It remains to check that ¢’ — 1. Since ¢’ and 1) are on the same line
v(x) +v(y) = v(a), they are comparable. If ¢y — ¢’ then ¢’ € r and we can
take ¢ = ¢/. O

From this proposition it follows that ¢ and r look like complementary
sets of teeth for a saw.

10



Figure 8:

Proposition 5.2 Let N(p) = N(q) ® N(r). Then p, q and r are related as
the graphs of the functions f(p), f(q) and f(r) in Figure 7 on the right.

Proof. It is clear that p = ¢ in a neighborhood of at least one pp-formula ¢
(for instance one can take z = 0 € ¢~ and apply Lemma 5.1). We show that
1 € r for every pp-formula with ¢) € p~ from this neighborhood of ¢. Indeed
let us assume that ¢ € r—. Then by Lemma 5.1 there exists £ € v~ Nq*
such that ¢ — £ and r ~ p over & (see Figure 7 on the left).

Then & € p~ which contradicts ¢ ~ p over . O

Let us return back to the example in Figure 4 on the right. For the
(canonical) decomposition N(p) = N(¢') ® N(r) as shown in Figure 8 on
the right we get N(¢') = N(q).

PP-types p and q are called orthogonal if N(p) and N(q) do not have an
isomorphic nonzero direct summand.

Corollary 5.3 Let N(p) = N(q) @ N(r). Then the modules N(q) and N(r)
are orthogonal.

Proof. It suffices to prove that for any such decomposition, N(q) is not
a direct summand of N(r). Indeed if N(¢) = N(s) ® N(¢') and N(r) =
N(s)® N(r'), then N(p) = N(s)® (N(s) ® N(q)® N(r')).

Assume that N(q) is isomorphic to a direct summand of N(r). Since
z = 0 € ¢, by Lemma 5.1 there is ¢ € ¢~ N7 such that ¢ ~ p over
. Also by Proposition 4.1 we may assume that the p-neighborhood of ¢ is
isomorphic to a 1-neighborhood of r, ¢ € r~, along a line v(x)+v(y) = v(a).

11



By Lemma 5.1 again, there is 8 € r— Mg such that ¥ — 6 and r ~ p over
0. Let 6 go to 6 under the translation identifying the 1-neighborhood of r
and the p-neighborhood of ¢ (see Figure 8 on the left), in particular 8’ € ¢~
Since ¢ — 0, 0’ € r. But the pp-formulae § € r~ Ng and ' € ¢~ Nr are on
the same line, hence comparable, a contradiction. O

6 Corollaries

Recall that a von Neumann regular ring S is called abelian regular, if all
idempotents of S are central. It is equivalent that S be regular and (left
and right) distributive. We say that the ring S is semiregular if S/ Jac(S) is
regular and idempotents can be lifted modulo Jac(.S). It has been mentioned
above that the endomorphism ring S of an arbitrary pure injective module
(over any ring) is semiregular and S/ Jac(S) is right self-injective. It is not
true in general that S/ Jac(.9) is abelian regular since, for ' = End(M & M),
T/ Jac(T) = My(S/ Jac(9S)) is not.

Lemma 6.1 Let p be a pp-type over a commutative valuation domain and
S = End(N(p)). Then S/ Jac(S) is an abelian regular ring.

Proof. Assume that S’ = S/ Jac(S) is not abelian regular. Then by [4,
Thm. 3.4], there is a direct summand of the right S’-module S’ of the form
T' & T'. Since idempotents can be lifted, one can lift this decomposition
to Sg =T @®T ® U. Since there is a 1-1 correspondence between direct
sum decompositions of Sg and N(p), it follows that N(p) = K 8 K ¢ L, a
contradiction to Corollary 5.3. O

An idempotent e of a von Neumann regular ring S is called abelian, if
the ring eSe is abelian regular. A regular right self-injective ring S is of
type I if the twosided ideal generated by abelian idempotents is essential as
a right ideal in S.

Proposition 6.2 Let M be a pure injective module over a commutative
valuation domain and S = End(M). Then S" = S/ Jac(S) is a von Neumann
reqular right self-injective ring of type I and idempotents can be lifted modulo
Jac(S).

Proof. It remains to prove that S’ is of type I. If 0 # m € M and T =
End(N(m)), then T/ Jac(T) is abelian regular by Lemma 6.1. So we can
apply [3, p. 33]. O
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A module M is called Bezout if every finitely generated submodule of M
is cyclic.

Proposition 6.3 Let M be a pure injective module over a commutative
valuation domain and S = End(M). Then gM is a Bezout module.

Proof. By [6], M is a distributive module. Also by [10, 3.33] every dis-
tributive module over a ring that is abelian regular modulo its radical is
Bezout. So by Lemma 6.1 every module N (p) is Bezout.

Let m,n € M: we prove that Sm + Sn C ¢M is a cyclic module.
Decompose M = N(m) @& N, where m = (m,0) and n = (nq,n2). Also set
N = N(ng) ® N', iie. N = N(m)® N(n2)® N’ with m = (m,0,0), n =
(n1,n2,0) in this decomposition. Since m,n; € N(m), there is k; € N(m)
such that eSem + eSen; = eSeky, where e is the projection onto N(m), in
particular Sm + Sn; = Sky. Let k = (k1,n2,0). Then m1(k) = k1, ma(k) =
ns, hence m,ny,no € Sk which yields m,n € Sk. Since k € Sm + Sn,
Sm+Sn=Sk. O

The author is indebted to M. Prest for helpful comments.
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