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Abstract

Using geometrical invariants we classify those pure injective mod-
ules over a commutative valuation domain which are envelopes of one
element.

1 Introduction

The problem of classification of pure injective modules over a commutative
valuation domain (CVD) was posed in the book of Fuchs and Salce [2,
Probl. 11]. A complete description of indecomposable pure injective modules
over a CVD is due to Ziegler [11]. So the main difficulty in the above
mentioned classification is provided by the so-called superdecomposable pure
injective modules, where a module M is called superdecomposable if M does
not contain an indecomposable direct summand.

Superdecomposable pure injective modules over a commutative valuation
domain (CVD) were first mentioned in [2, Ch. 11]. But, as was noticed later,
even the existence of these had not been proved there. The first complete
proofs appeared in Puninski [5] and Salce [9]. In particular from [5] it follows
that over a CVD V a superdecomposable pure injective module exists iff V
does not have Krull dimension (in the sense of Gabriel and Rentschler) and
a similar criterion was found in [9].

By Prest [8, Ch. 4], every element m of a pure injective module M over
any ring is contained in a (unique) “minimal” direct summand N(m) of M .
Also every pure injective module is a pure injective envelope of a module
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⊕i∈IN(mi). So the classification of pure injective modules of the form N(m)
is an essential ingredient in a solution of the general classification problem.

In this paper, using geometrical invariants, we classify pure injective
modules N(m) over a CVD V . It is known (see indicator functions in [2,
Ch. 11] or [5]) that to every element m in a pure injective module M over
a CVD V one can assign a function f : Γ → Γ̂ (Γ is a positive cone of the
valuation group of V and Γ̂ is its completion by cuts) such that N(m) is
completely determined by f . Of course different functions could lead to the
same pure injective module.

We describe (geometrically) an equivalence relation ∼ on functions such
that f ∼ g iff the corresponding modules N(f) and N(g) are isomorphic.
From this follows an easy description of a decomposition N(f) = N(g) ⊕
N(h) in terms of these functions which yields that N(g) and N(h) do not
have any direct summand in common (model theorists say “orthogonal” in
this case).

As a direct consequence of this result we prove that for every module
N(m), its endomorphism ring S = End(N(m)) is abelian regular after fac-
torization by its Jacobson radical Jac(S). By Zimmermann-Huisgen and
Zimmermann [12, Thm. 9] for every pure injective module M over any ring
with S = End(M), S/ Jac(S) is a von Neumann regular right self-injective
ring and idempotents can be lifted modulo Jac(S). We show that for every
pure injective module M over a CVD, S/ Jac(S) is of type I in the termi-
nology of Goodearl [4, Ch. 10]. Also SM is a Bezout module, i.e. the sum
of two cyclic S-submodules of M is a cyclic module. Note that an essen-
tial part of the arguments in [6] was to prove that for every pure injective
module M over a CVD, SM is a distributive module.

The above result gives also the possibility for a direct application of the
well developed theory of nonsingular injective modules over a von Neumann
regular ring. Unfortunately we are not able to describe clearly a connection
between the list of invariants given by Goodearl’s theory and our geometrical
description. So this is the task for future.

2 Preliminaries

A commutative valuation domain (CVD) V is a commutative domain whose
ideals are linearly ordered by inclusion. This means that for every a, b ∈ V ,
either a ∈ bV or b ∈ aV holds. For instance ZZ(p) (the localization of the
integers ZZ at a prime ideal pZZ) is a CVD. For elements a, b of a CVD V
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we put a ≤ b if bR ⊆ aR and a < b if bR ⊂ aR. This order corresponds to
a natural order on integers: say, for p, p2 ∈ ZZ(p), we have p < p2.

Since every CVD V is a local ring, the set of noninvertible elements of
V coincides with its Jacobson radical Jac(V ), and R \ Jac(R) = U(R) is the
set of units of V . For a, b ∈ V we write a ∼ b if aR = bR which is clearly
the same as a ≤ b ≤ a or a = bu, u ∈ U(V ). Factorizing V by ∼ we obtain
an ordered abelian semigroup (Γ(V ),≤) with cancellation and a natural
map (evaluation) a → v(a) ∈ Γ(V ) such that v(ab) = v(a) + v(b) holds for
0 ̸= a, b ∈ V . The largest element of Γ(V ) is given by v(0) (and one often
writes ∞ instead) and the smallest element of Γ(V ) is v(1). In fact Γ(V )
can be converted into the ordered abelian group by the usual procedure, but
we do not need this fact in the paper. For instance for V = ZZ(p), Γ(V ) is
(ordered) isomorphic to (IN,+,≤).

A cut on Γ(V ) is an arbitrary partition Γ(V ) = A ∪B such that A ̸= ∅,
and B is a filter on Γ(V ), i.e. b ∈ B and b ≤ c implies c ∈ B. Then A is
clearly an ideal of Γ(V ), i.e. a ∈ A and b ≤ a yields b ∈ A. The set Γ̂ of
cuts on Γ can be linearly ordered by the rule (A,B) ≤ (A′, B′) if A ⊆ A′

(equivalently B′ ⊆ B). There is a natural embedding Γ → Γ̂ where a ∈ Γ
goes to the cut l̂ = l̂(a) = {b ∈ Γ | b ≤ a} and B(l̂) = Γ \A(l̂). For instance
l̂(0) is the largest cut ∞ with A(∞) = Γ.

For background in the model theory of modules the reader is referred
to M. Prest’s book [8]. For instance a module M is pure injective if it is
injective with respect to pure embeddings. As with injective envelopes, every
module M has a unique pure injective envelope PE(M). A pp-formula is an
existentially quantified formula φ(x1, . . . , xm) “there exists ȳ = (y1, . . . , yk)
such that ȳA = x̄B”, where A is a k× l and B is a m× l matrix over a ring.
We say that φ is satisfied by a tuple m ∈ M , written M |= φ(m), if there
exists a tuple n̄ ∈ M such that n̄A = mB. Every pp-formula φ(x) defines
on M a pp-definable subgroup φ(M) = {m ∈ M | M |= φ(m)} and φ(M) is
even an S = End(M)-submodule of M (hence a submodule of M if the ring
is commutative). If φ,ψ are pp-formulae we say that φ implies ψ, written
φ→ ψ, if for any module M , φ(M) ⊆ ψ(M).

Givenm ∈M , a pp-type ppM (m) is a collection of pp-formulae {φ |M |=
φ(m)}. A pp-type can be also described as a set of pp-formulae that is closed
via finite conjuctions and implications. Given a pp-type p, there is a unique
“minimal” pure injective module (N(p),m) such that ppN(p)(m) = p. For
instance N(p) is a direct summand of every pure injective module realizing
p.
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3 Geometrical description of pp-types

Since we will use only pp-formulae of a very special kind, let us describe
them more explicitly. A divisibility formula is a formula a | x (there exist y
such that ya = x), hence it defines the submodule Ma in any V -module M .
Clearly for a ≤ b ∈ V we have b | x → a | x and the converse is also true.
An annihilator formula is a pp-formula xb = 0, b ∈ V and it defines in every
module M the submodule (xb = 0)(M) = {m ∈ M | mb = 0}. Similarly
annihilator formulae over a CVD V form a chain, where xa = 0 → xb = 0
iff a ≤ b.

It is not difficult to see that the sum of pp-formulae a | x + xb = 0
is a pp-formula ab | xb which defines in a module M the submodule (ab |
xb)(M) = {m ∈ M | mb ∈ Mab}. To every pp-formula ab | xb we assign
a point (b, a) of the plane Γ × Γ, where the divisibility formula a | x goes
to the point (1, a) on the y axis and an annihilator pp-formula xb = 0 goes
to the the point (b, 1) on the x axis. It follows from [5] that implication
among pp-formulae ab | xb, a, b ∈ V acts “right and down”, i.e. the set of
consequences of a pp-formula φ is contained in the angle with φ on the top
(see Figure 1 on the left).

Also the above decomposition shows that the sum of two pp-formulae
ab | xb and cd | xd can be drawn as in Figure 1 on the right.

The lattice of all pp-formulae over a CVD is generated by the two chains
just described, hence it is distributive. Every 1-pp-formula over V is equiv-
alent to a finite conjuction of pp-formulae φi = aibi | xbi. Moreover every
implication among them is “free” meaning that ∧ni=1φi → φ = ab | xb iff
φi → φ for some i. Also every pp-formula φ(x1, . . . , xn) over V is equivalent
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to a finite conjunction of (divisibility) formulae a | xb1+ . . .+xbn, a, bi ∈ V .
It follows that every pp-type p(x) over V is uniquely determined by pp-

formulae ab | xb ∈ p, i.e. by some subset of the plane Γ×Γ. Let us make this
description more precise. Let p = p(x) be a pp-type (in one free variable)
over a CVD V . We construct from p a function f(p) : Γ → Γ̂ by setting
A(f(b)) = {a ∈ Γ : ab | xb ∈ p}. For instance A(f(b)) = ∞ iff xb = 0 ∈ p.
Then (see [7, Ch. 12]) 1) f is nondecreasing; 2) f(1) ̸= ∞ and 3) f(0) = ∞.
Moreover there is 1-1 correspondence between such functions and 1-pp-types
over a CVD V . Thus we obtain a geometrical representation of every 1-pp-
type p as the graph of the function f(p). Here (see Figure 2 on the left) the
positive part p+ of p is under the graph of f(p), and the negative part p− is
over f(p).

A pp-type p is called indecomposable if the module N(p) is indecompos-
able and p is superdecomposable if N(p) is a superdecomposable module. By
[1, p. 162] in terms of this description p is indecomposable iff f(p) is a one
step ladder (see Figure 2 on the right). On the level of pp-formulae that
means that ab | xb ∈ p implies either a | x ∈ p or xb = 0 ∈ p.

The property of p being superdecomposable can also be reformulated in
purely geometrical terms (see [7, Ch. 12]). Precisely p is superdecomposable
iff for every pp-formula φ = ab | xb ∈ p−, there is a rectangle with φ at
its left upper corner such that only the lower right corner of it is in p+ (see
Figure 3 on the left).

If a superdecomposable pure injective module exists, Γ must contain a
copy of the ordered set of rationals (Q,≤). For instance if Γ is a dense linear
order (for every a < b ∈ Γ, a < c < b for some c), then the diagonal y = x
(i.e. ab | xb ∈ p iff a ≤ b) is such.
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4 Isomorphism criterion for N(p)

Let p(x) be a pp-type over a CVD V . In this section we describe the pp-types
q that are realized in N(p).

Let q, r be pp-types over V . We say that q and r are equivalent over a
pp-formula φ if φ ∈ q−, r− and for every pp-formula ψ such that φ → ψ,
ψ ∈ q iff ψ ∈ r (so q and r look similar over φ). Geometrically that means
that the φ-neighborhoods of q and r coincide (see Figure 3 on the right).

Let p, q be pp-types over V , φ = ab | xb, ψ = cd | xd such that φ ∈
p−, ψ ∈ q−. We say that ψ-neighborhood of q is obtained by translation
of the φ-neighborhood of p, if ab = cd (i.e. v(a) + v(b) = v(c) + v(d))
and the former is obtained from the latter by a translation along the line
v(x) + v(y) = v(a) + v(b) (see Figure 4 on the left).

The following proposition is a criterion for: N(q) is a direct summand
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of N(p).

Proposition 4.1 Let p, q be 1-pp-types over a commutative valuation do-
main V . Then q is realized in N(p) iff for every φ′ = a′b′ | xb′ ∈ q− there
exists φ = ab | xb ∈ q− and ψ ∈ p− such that φ′ → φ and the ψ-neighborhood
of p is obtained from the φ-neighborhood of q by a translation along the line
v(x) + v(y) = v(a) + v(b).

In order to clarify this condition, let us consider an example. Let p be
the pp-type given by the line y = x and let q be given by the line y = x+2 as
shown in Figure 4 on the right (we assume that Γ looks like the non-negative
rationals or reals). Then q is realized in p, i.e. N(q) is a direct summand of
N(p) but N(p) is not a direct summand of N(q), in particular these modules
are nonisomorphic. Indeed, if (b, a) ∈ q− then clearly (b + 1, a − 1) ∈ p−.
On the other hand no neighborhood of (0, 1) ∈ p− can be translated to an
isomorphic neighborhood of q.

Note that if m ∈ N(p) is a realization for p and r ∈ V is such that
v(r) = 2, then the pp-type of mr in N(p) is q. In particular there is a
pure embedding N(q) → N(p) over mr whose image is a direct summand
of N(p). Nevertheless (see below) under projection to this direct summand,
the image of m has pp-type not equal to q.

For pp-types p and q as shown in Figure 5 on the left, N(p) ∼= N(q) but
we should first move φ′ and only then apply a translation.

Proof. Let us prove the necessity. To distinguish p and q we will assume
that p = p(x) and q = q(y). Since q is realized in N(p), then (see [8, Ch. 6])

7



q is maximal over p, i.e. there is a pp-type r(y, x) which is consistent with
p(x)∪ q(y) (i.e. no formula of p− or q− is a consequence of r ∪ p(x)∪ q(y)),
and for every φ(y) ∈ q− there is ψ(x) ∈ p− such that φ ∪ r → ψ.

Let φ′ = a′b′ | yb′ ∈ q−. Then there are pp-formulae θ(y, x) ∈ r and
ψ(x) ∈ p− such that φ′ ∧ θ → ψ. We may assume that θ = ∧iai | xbi + yci,
ai, bi, ci ∈ V and ψ = a | xb. By the common denominator theorem [7,
Ch. 10], this implication can be decomposed as:

φ′ = a′b′ | yb′ → a′b′g | yb′g → a | yb′g,

where a′b′g = ua,

θi = ai | ybi + xci → aigi | ybigi + xcigi → a | ybigi + xcigi,

where aigi = g′ia (we have obtained a common denominator a),

φ′ ∧ θ → a | y(
∑

bigi + b′g) + x(
∑

cigi)

and the last formula implies a | xb in view of
∑
bigi+ b′g = sa and

∑
cigi =

b+ ta.
We set θ′ = a | y(

∑
bigi − sa) + x(

∑
cigi − ta), i.e. θ′ = a | yb′g + xb.

Then θ → θ′ hence we may assume that θ = θ′. Also φ′ → φ = a | yb′g
and φ ∈ q− (otherwise r is not consistent with p ∪ q). Then all formulae
φ(y) = a | yb′g ∈ q−, θ′(x, y) = a | yb′g + xb ∈ r and ψ(x) = a | xb ∈ p− are
on the same line v(x) + v(y) = v(a).

Let us prove that the φ-neighborhood of q and the ψ-neigborhood of p
are isomorphic via this line. Indeed if φ′(y) ∈ q− is in the neighborhood of
φ, then the implication φ → φ′ can be decomposed in two steps: right and
then down (see Figure 5 on the right). In ring language this means that
we multiply a and b′g by t ∈ V and then we divide at by an element of V
moving to the line v(x) + v(y) = v(a′). Repeating this for θ and ψ we get
formulae θ′(y, x) and ψ′ on the same line, where, since θ → θ′, θ′ ∈ r. If
ψ′ ∈ p, then θ′ ∧ ψ′ → φ′ yields φ′ ∈ r, i.e. φ′ ∈ q, a contradiction. Arguing
similarly for the pp-formula φ′ ∈ q−, we get the required isomorphism.

Let us prove sufficiency. A formula θ(y, x) = a | yb + xc will be called
connecting, if φ(y) = a | yb ∈ q−, ψ(x) = a | xc ∈ p− and the φ-
neighborhood of q and the ψ-neighborhood of p are isomorphic along the
line v(x) + v(y) = v(a). The projections φ(y), ψ(x) will be also called con-
necting formulae. For connecting formulae φ(y), φ′(y) ∈ q− set φ ∼ φ′ if
φ + φ′ ∈ q−, hence the isomorphism of neighborhoods of q and p can be
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extended to a larger φ′′-neighborhood of q (see Figure 6 on the right). We
will use the same symbol ∼ for the transitive closure of this relation.

Now we construct a pp-type r(y, x) in the following way. Choose a
representative θ(y, x) from every equivalence class of ∼ and multiply it by
moving according to the definition of ∼. Now add p(x) ∪ q(y). It is almost
evident that this type is consistent with p∪ q and has the desired properties
(there is no interference between formulas in different ∼-classes exept what
is obvious, i.e. that given by p ∪ q). 2

Note that (see [3, Cor. 2]) pure injective modules M and N are isomor-
phic iff M is a direct summand of N and N is a direct summand of M .
Thus Proposition 4.1 answers the question of when modules N(p) and N(q)
are isomorphic.

Nevertheless it is not easy to describe the shapes which a function could
have in a given equivalence class. We say that a function f is rigid if N(f) ∼=
N(g) yields f = g. For instance the answer to the following question seems
to depend on the existence of a kind of fractal structure.

Question 4.2 Let V be a commutative valuation domain such that Γ(V ) ∼=
Q+. Is it true that the function y = x is rigid ?

5 Decompositions of N(p)

Let N(p) be a pure injective module over a CVD, wherem ∈ N(p) realizes p.
Assume that N(p) = N1⊕N2 and thatm = m1+m2 via this decomposition.
Then for q = ppN(p)(m1), r = ppN(p)(m2) by [8, Ch. 4] we have N1 = N(q),
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N2 = N(r) and clearly p = q ∩ r. We will refer to such a decomposition of
N(p) (and of p) as canonical.

Let us refine Proposition 4.1 for a canonical decomposition of N(p).

Lemma 5.1 Let p, q, r be pp-types over a CVD V such that N(p) = N(q)⊕
N(r) is a canonical decomposition. Then for every φ = a′ | xb′ ∈ q− there
exists ψ = a | xb ∈ q− ∩ r+ such that φ→ ψ and q ∼ p over ψ (see Figure 7
on the left).

Proof. Let m ∈ N = N(p) realize p and let the decomposition N(p) =
N(q) ⊕ N(r) induce a decomposition m = n + k. Thus q(y) = pp(n),
r(z) = pp(k) and p = q ∩ r.

Arguing as in the proof of Proposition 4.1, we find φ′ = a | yb ∈ q− and
θ(y, x) = a | yb+ xc such that φ→ φ′, N(p) |= θ(n,m) and ψ(x) = a | xc ∈
p−. Projecting θ(n,m) onto N(r) we get ψ(z) ∈ r+. Since ψ(x) ∈ p−, we
have ψ(y) ∈ q−.

Let us prove that q ∼ p over ψ. Indeed let ψ → π. If π ∈ p, then (since
p = q ∩ r) π ∈ q. Let π ∈ q. Since ψ ∈ r and ψ → π, π ∈ r. Thus (adding)
we get π ∈ p.

It remains to check that φ′ → ψ. Since φ′ and ψ are on the same line
v(x)+ v(y) = v(a), they are comparable. If ψ → φ′, then φ′ ∈ r and we can
take ψ = φ′. 2

From this proposition it follows that q and r look like complementary
sets of teeth for a saw.
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Proposition 5.2 Let N(p) = N(q)⊕N(r). Then p, q and r are related as
the graphs of the functions f(p), f(q) and f(r) in Figure 7 on the right.

Proof. It is clear that p = q in a neighborhood of at least one pp-formula φ
(for instance one can take x = 0 ∈ q− and apply Lemma 5.1). We show that
ψ ∈ r for every pp-formula with ψ ∈ p− from this neighborhood of q. Indeed
let us assume that ψ ∈ r−. Then by Lemma 5.1 there exists ξ ∈ r− ∩ q+
such that ψ → ξ and r ∼ p over ξ (see Figure 7 on the left).

Then ξ ∈ p− which contradicts q ∼ p over φ. 2

Let us return back to the example in Figure 4 on the right. For the
(canonical) decomposition N(p) = N(q′) ⊕ N(r) as shown in Figure 8 on
the right we get N(q′) ∼= N(q).

PP-types p and q are called orthogonal if N(p) and N(q) do not have an
isomorphic nonzero direct summand.

Corollary 5.3 Let N(p) = N(q)⊕N(r). Then the modules N(q) and N(r)
are orthogonal.

Proof. It suffices to prove that for any such decomposition, N(q) is not
a direct summand of N(r). Indeed if N(q) = N(s) ⊕ N(q′) and N(r) =
N(s)⊕N(r′), then N(p) = N(s)⊕ (N(s)⊕N(q)⊕N(r′)).

Assume that N(q) is isomorphic to a direct summand of N(r). Since
x = 0 ∈ q−, by Lemma 5.1 there is φ ∈ q− ∩ r such that q ∼ p over
φ. Also by Proposition 4.1 we may assume that the φ-neighborhood of q is
isomorphic to a ψ-neighborhood of r, ψ ∈ r−, along a line v(x)+v(y) = v(a).
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By Lemma 5.1 again, there is θ ∈ r−∩ q such that ψ → θ and r ∼ p over
θ. Let θ go to θ′ under the translation identifying the ψ-neighborhood of r
and the φ-neighborhood of q (see Figure 8 on the left), in particular θ′ ∈ q−.
Since φ→ θ′, θ′ ∈ r. But the pp-formulae θ ∈ r− ∩ q and θ′ ∈ q− ∩ r are on
the same line, hence comparable, a contradiction. 2

6 Corollaries

Recall that a von Neumann regular ring S is called abelian regular, if all
idempotents of S are central. It is equivalent that S be regular and (left
and right) distributive. We say that the ring S is semiregular if S/ Jac(S) is
regular and idempotents can be lifted modulo Jac(S). It has been mentioned
above that the endomorphism ring S of an arbitrary pure injective module
(over any ring) is semiregular and S/ Jac(S) is right self-injective. It is not
true in general that S/ Jac(S) is abelian regular since, for T = End(M⊕M),
T/ Jac(T ) =M2(S/ Jac(S)) is not.

Lemma 6.1 Let p be a pp-type over a commutative valuation domain and
S = End(N(p)). Then S/ Jac(S) is an abelian regular ring.

Proof. Assume that S′ = S/ Jac(S) is not abelian regular. Then by [4,
Thm. 3.4], there is a direct summand of the right S′-module S′ of the form
T ′ ⊕ T ′. Since idempotents can be lifted, one can lift this decomposition
to SS = T ⊕ T ⊕ U . Since there is a 1-1 correspondence between direct
sum decompositions of SS and N(p), it follows that N(p) = K ⊕K ⊕ L, a
contradiction to Corollary 5.3. 2

An idempotent e of a von Neumann regular ring S is called abelian, if
the ring eSe is abelian regular. A regular right self-injective ring S is of
type I if the twosided ideal generated by abelian idempotents is essential as
a right ideal in S.

Proposition 6.2 Let M be a pure injective module over a commutative
valuation domain and S = End(M). Then S′ = S/ Jac(S) is a von Neumann
regular right self-injective ring of type I and idempotents can be lifted modulo
Jac(S).

Proof. It remains to prove that S′ is of type I. If 0 ̸= m ∈ M and T =
End(N(m)), then T/ Jac(T ) is abelian regular by Lemma 6.1. So we can
apply [3, p. 33]. 2
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A moduleM is called Bezout if every finitely generated submodule ofM
is cyclic.

Proposition 6.3 Let M be a pure injective module over a commutative
valuation domain and S = End(M). Then SM is a Bezout module.

Proof. By [6], SM is a distributive module. Also by [10, 3.33] every dis-
tributive module over a ring that is abelian regular modulo its radical is
Bezout. So by Lemma 6.1 every module N(p) is Bezout.

Let m,n ∈ M : we prove that Sm + Sn ⊆ SM is a cyclic module.
Decompose M = N(m) ⊕N , where m = (m, 0) and n = (n1, n2). Also set
N = N(n2) ⊕ N ′, i.e. N = N(m) ⊕ N(n2) ⊕ N ′ with m = (m, 0, 0), n =
(n1, n2, 0) in this decomposition. Since m,n1 ∈ N(m), there is k1 ∈ N(m)
such that eSem+ eSen1 = eSek1, where e is the projection onto N(m), in
particular Sm+ Sn1 = Sk1. Let k = (k1, n2, 0). Then π1(k) = k1, π2(k) =
n2, hence m,n1, n2 ∈ Sk which yields m,n ∈ Sk. Since k ∈ Sm + Sn,
Sm+ Sn = Sk. 2

The author is indebted to M. Prest for helpful comments.
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