Pure injective modules over a commutative valuation domain

Gennadi Puninski*

Abstract

Using geometrical invariants we classify those pure injective modules over a commutative valuation domain which are envelopes of one element.

1 Introduction

The problem of classification of pure injective modules over a commutative valuation domain (CVD) was posed in the book of Fuchs and Salce [2, Probl. 11]. A complete description of indecomposable pure injective modules over a CVD is due to Ziegler [11]. So the main difficulty in the above mentioned classification is provided by the so-called superdecomposable pure injective modules, where a module M is called *superdecomposable* if M does not contain an indecomposable direct summand.

Superdecomposable pure injective modules over a commutative valuation domain (CVD) were first mentioned in [2, Ch. 11]. But, as was noticed later, even the existence of these had not been proved there. The first complete proofs appeared in Puninski [5] and Salce [9]. In particular from [5] it follows that over a CVD V a superdecomposable pure injective module exists iff V does not have Krull dimension (in the sense of Gabriel and Rentschler) and a similar criterion was found in [9].

By Prest [8, Ch. 4], every element m of a pure injective module M over any ring is contained in a (unique) "minimal" direct summand N(m) of M. Also every pure injective module is a pure injective envelope of a module

^{*}This paper was written during the visit of the author to the University of Manchester supported by EPSRC grant GR/N39104. He would like to thank University for the kind hospitality. 2000 Mathematics Subject classification: Primary 16D50, Secondary 13F30 Key words and phrases: pure injective module, valuation domain, abelian regular ring

 $\bigoplus_{i \in I} N(m_i)$. So the classification of pure injective modules of the form N(m) is an essential ingredient in a solution of the general classification problem.

In this paper, using geometrical invariants, we classify pure injective modules N(m) over a CVD V. It is known (see indicator functions in [2, Ch. 11] or [5]) that to every element m in a pure injective module M over a CVD V one can assign a function $f: \Gamma \to \widehat{\Gamma}$ (Γ is a positive cone of the valuation group of V and $\widehat{\Gamma}$ is its completion by cuts) such that N(m) is completely determined by f. Of course different functions could lead to the same pure injective module.

We describe (geometrically) an equivalence relation \sim on functions such that $f \sim g$ iff the corresponding modules N(f) and N(g) are isomorphic. From this follows an easy description of a decomposition $N(f) = N(g) \oplus N(h)$ in terms of these functions which yields that N(g) and N(h) do not have any direct summand in common (model theorists say "orthogonal" in this case).

As a direct consequence of this result we prove that for every module N(m), its endomorphism ring S = End(N(m)) is abelian regular after factorization by its Jacobson radical Jac(S). By Zimmermann-Huisgen and Zimmermann [12, Thm. 9] for every pure injective module M over any ring with S = End(M), S/Jac(S) is a von Neumann regular right self-injective ring and idempotents can be lifted modulo Jac(S). We show that for every pure injective module M over a CVD, S/Jac(S) is of type I in the terminology of Goodearl [4, Ch. 10]. Also $_SM$ is a Bezout module, i.e. the sum of two cyclic S-submodules of M is a cyclic module. Note that an essential part of the arguments in [6] was to prove that for every pure injective module M over a CVD, $_SM$ is a distributive module.

The above result gives also the possibility for a direct application of the well developed theory of nonsingular injective modules over a von Neumann regular ring. Unfortunately we are not able to describe clearly a connection between the list of invariants given by Goodearl's theory and our geometrical description. So this is the task for future.

2 Preliminaries

A commutative valuation domain (CVD) V is a commutative domain whose ideals are linearly ordered by inclusion. This means that for every $a, b \in V$, either $a \in bV$ or $b \in aV$ holds. For instance $\mathbb{Z}_{(p)}$ (the localization of the integers \mathbb{Z} at a prime ideal $p\mathbb{Z}$) is a CVD. For elements a, b of a CVD V we put $a \leq b$ if $bR \subseteq aR$ and a < b if $bR \subset aR$. This order corresponds to a natural order on integers: say, for $p, p^2 \in \mathbb{Z}_{(p)}$, we have $p < p^2$.

Since every CVD V is a local ring, the set of noninvertible elements of V coincides with its Jacobson radical $\operatorname{Jac}(V)$, and $R \setminus \operatorname{Jac}(R) = \operatorname{U}(R)$ is the set of units of V. For $a, b \in V$ we write $a \sim b$ if aR = bR which is clearly the same as $a \leq b \leq a$ or a = bu, $u \in \operatorname{U}(V)$. Factorizing V by \sim we obtain an ordered abelian semigroup $(\Gamma(V), \leq)$ with cancellation and a natural map (evaluation) $a \to v(a) \in \Gamma(V)$ such that v(ab) = v(a) + v(b) holds for $0 \neq a, b \in V$. The largest element of $\Gamma(V)$ is given by v(0) (and one often writes ∞ instead) and the smallest element of $\Gamma(V)$ is v(1). In fact $\Gamma(V)$ can be converted into the ordered abelian group by the usual procedure, but we do not need this fact in the paper. For instance for $V = \mathbb{Z}_{(p)}$, $\Gamma(V)$ is (ordered) isomorphic to $(\mathbb{I}N, +, \leq)$.

A cut on $\Gamma(V)$ is an arbitrary partition $\Gamma(V) = A \cup B$ such that $A \neq \emptyset$, and B is a filter on $\Gamma(V)$, i.e. $b \in B$ and $b \leq c$ implies $c \in B$. Then A is clearly an ideal of $\Gamma(V)$, i.e. $a \in A$ and $b \leq a$ yields $b \in A$. The set $\widehat{\Gamma}$ of cuts on Γ can be linearly ordered by the rule $(A, B) \leq (A', B')$ if $A \subseteq A'$ (equivalently $B' \subseteq B$). There is a natural embedding $\Gamma \to \widehat{\Gamma}$ where $a \in \Gamma$ goes to the cut $\widehat{l} = \widehat{l}(a) = \{b \in \Gamma \mid b \leq a\}$ and $B(\widehat{l}) = \Gamma \setminus A(\widehat{l})$. For instance $\widehat{l}(0)$ is the largest cut ∞ with $A(\infty) = \Gamma$.

For background in the model theory of modules the reader is referred to M. Prest's book [8]. For instance a module M is *pure injective* if it is injective with respect to pure embeddings. As with injective envelopes, every module M has a unique *pure injective envelope* PE(M). A *pp-formula* is an existentially quantified formula $\varphi(x_1, \ldots, x_m)$ "there exists $\bar{y} = (y_1, \ldots, y_k)$ such that $\bar{y}A = \bar{x}B$ ", where A is a $k \times l$ and B is a $m \times l$ matrix over a ring. We say that φ is satisfied by a tuple $\overline{m} \in M$, written $M \models \varphi(\overline{m})$, if there exists a tuple $\bar{n} \in M$ such that $\bar{n}A = \overline{m}B$. Every pp-formula $\varphi(x)$ defines on M a *pp-definable subgroup* $\varphi(M) = \{m \in M \mid M \models \varphi(m)\}$ and $\varphi(M)$ is even an S = End(M)-submodule of M (hence a submodule of M if the ring is commutative). If φ, ψ are pp-formulae we say that φ implies ψ , written $\varphi \to \psi$, if for any module $M, \varphi(M) \subseteq \psi(M)$.

Given $m \in M$, a pp-type $pp_M(m)$ is a collection of pp-formulae $\{\varphi \mid M \models \varphi(m)\}$. A pp-type can be also described as a set of pp-formulae that is closed via finite conjuctions and implications. Given a pp-type p, there is a unique "minimal" pure injective module (N(p), m) such that $pp_{N(p)}(m) = p$. For instance N(p) is a direct summand of every pure injective module realizing p.

Figure 1:

3 Geometrical description of pp-types

Since we will use only pp-formulae of a very special kind, let us describe them more explicitly. A *divisibility* formula is a formula $a \mid x$ (there exist ysuch that ya = x), hence it defines the submodule Ma in any V-module M. Clearly for $a \leq b \in V$ we have $b \mid x \to a \mid x$ and the converse is also true. An *annihilator formula* is a pp-formula $xb = 0, b \in V$ and it defines in every module M the submodule $(xb = 0)(M) = \{m \in M \mid mb = 0\}$. Similarly annihilator formulae over a CVD V form a chain, where $xa = 0 \to xb = 0$ iff $a \leq b$.

It is not difficult to see that the sum of pp-formulae $a \mid x + xb = 0$ is a pp-formula $ab \mid xb$ which defines in a module M the submodule $(ab \mid xb)(M) = \{m \in M \mid mb \in Mab\}$. To every pp-formula $ab \mid xb$ we assign a point (b, a) of the plane $\Gamma \times \Gamma$, where the divisibility formula $a \mid x$ goes to the point (1, a) on the y axis and an annihilator pp-formula xb = 0 goes to the the point (b, 1) on the x axis. It follows from [5] that implication among pp-formulae $ab \mid xb$, $a, b \in V$ acts "right and down", i.e. the set of consequences of a pp-formula φ is contained in the angle with φ on the top (see Figure 1 on the left).

Also the above decomposition shows that the sum of two pp-formulae $ab \mid xb$ and $cd \mid xd$ can be drawn as in Figure 1 on the right.

The lattice of all pp-formulae over a CVD is generated by the two chains just described, hence it is distributive. Every 1-pp-formula over V is equivalent to a finite conjuction of pp-formulae $\varphi_i = a_i b_i \mid x b_i$. Moreover every implication among them is "free" meaning that $\bigwedge_{i=1}^n \varphi_i \to \varphi = ab \mid xb$ iff $\varphi_i \to \varphi$ for some *i*. Also every pp-formula $\varphi(x_1, \ldots, x_n)$ over V is equivalent

to a finite conjunction of (divisibility) formulae $a \mid xb_1 + \ldots + xb_n, a, b_i \in V$.

It follows that every pp-type p(x) over V is uniquely determined by ppformulae $ab \mid xb \in p$, i.e. by some subset of the plane $\Gamma \times \Gamma$. Let us make this description more precise. Let p = p(x) be a pp-type (in one free variable) over a CVD V. We construct from p a function $f(p) : \Gamma \to \widehat{\Gamma}$ by setting $A(f(b)) = \{a \in \Gamma : ab \mid xb \in p\}$. For instance $A(f(b)) = \infty$ iff $xb = 0 \in p$. Then (see [7, Ch. 12]) 1) f is nondecreasing; 2) $f(1) \neq \infty$ and 3) $f(0) = \infty$. Moreover there is 1-1 correspondence between such functions and 1-pp-types over a CVD V. Thus we obtain a geometrical representation of every 1-pptype p as the graph of the function f(p). Here (see Figure 2 on the left) the positive part p^+ of p is under the graph of f(p), and the negative part p^- is over f(p).

A pp-type p is called *indecomposable* if the module N(p) is indecomposable and p is *superdecomposable* if N(p) is a superdecomposable module. By [1, p. 162] in terms of this description p is indecomposable iff f(p) is a one step ladder (see Figure 2 on the right). On the level of pp-formulae that means that $ab \mid xb \in p$ implies either $a \mid x \in p$ or $xb = 0 \in p$.

The property of p being superdecomposable can also be reformulated in purely geometrical terms (see [7, Ch. 12]). Precisely p is superdecomposable iff for every pp-formula $\varphi = ab \mid xb \in p^-$, there is a rectangle with φ at its left upper corner such that only the lower right corner of it is in p^+ (see Figure 3 on the left).

If a superdecomposable pure injective module exists, Γ must contain a copy of the ordered set of rationals (\mathbb{Q}, \leq) . For instance if Γ is a dense linear order (for every $a < b \in \Gamma$, a < c < b for some c), then the diagonal y = x (i.e. $ab \mid xb \in p$ iff $a \leq b$) is such.

Figure 4:

4 Isomorphism criterion for N(p)

Let p(x) be a pp-type over a CVD V. In this section we describe the pp-types q that are realized in N(p).

Let q, r be pp-types over V. We say that q and r are equivalent over a pp-formula φ if $\varphi \in q^-, r^-$ and for every pp-formula ψ such that $\varphi \to \psi$, $\psi \in q$ iff $\psi \in r$ (so q and r look similar over φ). Geometrically that means that the φ -neighborhoods of q and r coincide (see Figure 3 on the right).

Let p, q be pp-types over $V, \varphi = ab | xb, \psi = cd | xd$ such that $\varphi \in p^-, \psi \in q^-$. We say that ψ -neighborhood of q is obtained by translation of the φ -neighborhood of p, if ab = cd (i.e. v(a) + v(b) = v(c) + v(d)) and the former is obtained from the latter by a translation along the line v(x) + v(y) = v(a) + v(b) (see Figure 4 on the left).

The following proposition is a criterion for: N(q) is a direct summand

Figure 5:

of N(p).

Proposition 4.1 Let p, q be 1-pp-types over a commutative valuation domain V. Then q is realized in N(p) iff for every $\varphi' = a'b' | xb' \in q^-$ there exists $\varphi = ab | xb \in q^-$ and $\psi \in p^-$ such that $\varphi' \to \varphi$ and the ψ -neighborhood of p is obtained from the φ -neighborhood of q by a translation along the line v(x) + v(y) = v(a) + v(b).

In order to clarify this condition, let us consider an example. Let p be the pp-type given by the line y = x and let q be given by the line y = x+2 as shown in Figure 4 on the right (we assume that Γ looks like the non-negative rationals or reals). Then q is realized in p, i.e. N(q) is a direct summand of N(p) but N(p) is not a direct summand of N(q), in particular these modules are nonisomorphic. Indeed, if $(b, a) \in q^-$ then clearly $(b + 1, a - 1) \in p^-$. On the other hand no neighborhood of $(0, 1) \in p^-$ can be translated to an isomorphic neighborhood of q.

Note that if $m \in N(p)$ is a realization for p and $r \in V$ is such that v(r) = 2, then the pp-type of mr in N(p) is q. In particular there is a pure embedding $N(q) \to N(p)$ over mr whose image is a direct summand of N(p). Nevertheless (see below) under projection to this direct summand, the image of m has pp-type not equal to q.

For pp-types p and q as shown in Figure 5 on the left, $N(p) \cong N(q)$ but we should first move φ' and only then apply a translation.

Proof. Let us prove the necessity. To distinguish p and q we will assume that p = p(x) and q = q(y). Since q is realized in N(p), then (see [8, Ch. 6])

q is maximal over p, i.e. there is a pp-type r(y, x) which is consistent with $p(x) \cup q(y)$ (i.e. no formula of p^- or q^- is a consequence of $r \cup p(x) \cup q(y)$), and for every $\varphi(y) \in q^-$ there is $\psi(x) \in p^-$ such that $\varphi \cup r \to \psi$.

Let $\varphi' = a'b' \mid yb' \in q^-$. Then there are pp-formulae $\theta(y, x) \in r$ and $\psi(x) \in p^-$ such that $\varphi' \wedge \theta \to \psi$. We may assume that $\theta = \wedge_i a_i \mid xb_i + yc_i$, $a_i, b_i, c_i \in V$ and $\psi = a \mid xb$. By the common denominator theorem [7, Ch. 10], this implication can be decomposed as:

$$\varphi' = a'b' \mid yb' \to a'b'g \mid yb'g \to a \mid yb'g,$$

where a'b'g = ua,

$$\theta_i = a_i \mid yb_i + xc_i \rightarrow a_ig_i \mid yb_ig_i + xc_ig_i \rightarrow a \mid yb_ig_i + xc_ig_i,$$

where $a_i g_i = g'_i a$ (we have obtained a common denominator a),

$$\varphi' \wedge \theta \to a \mid y(\sum b_i g_i + b'g) + x(\sum c_i g_i)$$

and the last formula implies $a \mid xb$ in view of $\sum b_i g_i + b'g = sa$ and $\sum c_i g_i = b + ta$.

We set $\theta' = a \mid y(\sum b_i g_i - sa) + x(\sum c_i g_i - ta)$, i.e. $\theta' = a \mid yb'g + xb$. Then $\theta \to \theta'$ hence we may assume that $\theta = \theta'$. Also $\varphi' \to \varphi = a \mid yb'g$ and $\varphi \in q^-$ (otherwise r is not consistent with $p \cup q$). Then all formulae $\varphi(y) = a \mid yb'g \in q^-, \theta'(x, y) = a \mid yb'g + xb \in r$ and $\psi(x) = a \mid xb \in p^-$ are on the same line v(x) + v(y) = v(a).

Let us prove that the φ -neighborhood of q and the ψ -neighborhood of p are isomorphic via this line. Indeed if $\varphi'(y) \in q^-$ is in the neighborhood of φ , then the implication $\varphi \to \varphi'$ can be decomposed in two steps: right and then down (see Figure 5 on the right). In ring language this means that we multiply a and b'g by $t \in V$ and then we divide at by an element of V moving to the line v(x) + v(y) = v(a'). Repeating this for θ and ψ we get formulae $\theta'(y, x)$ and ψ' on the same line, where, since $\theta \to \theta', \theta' \in r$. If $\psi' \in p$, then $\theta' \land \psi' \to \varphi'$ yields $\varphi' \in r$, i.e. $\varphi' \in q$, a contradiction. Arguing similarly for the pp-formula $\varphi' \in q^-$, we get the required isomorphism.

Let us prove sufficiency. A formula $\theta(y, x) = a \mid yb + xc$ will be called connecting, if $\varphi(y) = a \mid yb \in q^-$, $\psi(x) = a \mid xc \in p^-$ and the φ neighborhood of q and the ψ -neighborhood of p are isomorphic along the line v(x) + v(y) = v(a). The projections $\varphi(y), \psi(x)$ will be also called connecting formulae. For connecting formulae $\varphi(y), \varphi'(y) \in q^-$ set $\varphi \sim \varphi'$ if $\varphi + \varphi' \in q^-$, hence the isomorphism of neighborhoods of q and p can be

Figure 6:

extended to a larger φ'' -neighborhood of q (see Figure 6 on the right). We will use the same symbol \sim for the transitive closure of this relation.

Now we construct a pp-type r(y, x) in the following way. Choose a representative $\theta(y, x)$ from every equivalence class of \sim and multiply it by moving according to the definition of \sim . Now add $p(x) \cup q(y)$. It is almost evident that this type is consistent with $p \cup q$ and has the desired properties (there is no interference between formulas in different \sim -classes exept what is obvious, i.e. that given by $p \cup q$). \Box

Note that (see [3, Cor. 2]) pure injective modules M and N are isomorphic iff M is a direct summand of N and N is a direct summand of M. Thus Proposition 4.1 answers the question of when modules N(p) and N(q) are isomorphic.

Nevertheless it is not easy to describe the shapes which a function could have in a given equivalence class. We say that a function f is *rigid* if $N(f) \cong N(g)$ yields f = g. For instance the answer to the following question seems to depend on the existence of a kind of fractal structure.

Question 4.2 Let V be a commutative valuation domain such that $\Gamma(V) \cong \mathbb{Q}^+$. Is it true that the function y = x is rigid ?

5 Decompositions of N(p)

Let N(p) be a pure injective module over a CVD, where $m \in N(p)$ realizes p. Assume that $N(p) = N_1 \oplus N_2$ and that $m = m_1 + m_2$ via this decomposition. Then for $q = pp_{N(p)}(m_1)$, $r = pp_{N(p)}(m_2)$ by [8, Ch. 4] we have $N_1 = N(q)$,

Figure 7:

 $N_2 = N(r)$ and clearly $p = q \cap r$. We will refer to such a decomposition of N(p) (and of p) as *canonical*.

Let us refine Proposition 4.1 for a canonical decomposition of N(p).

Lemma 5.1 Let p, q, r be pp-types over a CVD V such that $N(p) = N(q) \oplus N(r)$ is a canonical decomposition. Then for every $\varphi = a' \mid xb' \in q^-$ there exists $\psi = a \mid xb \in q^- \cap r^+$ such that $\varphi \to \psi$ and $q \sim p$ over ψ (see Figure 7 on the left).

Proof. Let $m \in N = N(p)$ realize p and let the decomposition $N(p) = N(q) \oplus N(r)$ induce a decomposition m = n + k. Thus q(y) = pp(n), r(z) = pp(k) and $p = q \cap r$.

Arguing as in the proof of Proposition 4.1, we find $\varphi' = a \mid yb \in q^-$ and $\theta(y, x) = a \mid yb + xc$ such that $\varphi \to \varphi'$, $N(p) \models \theta(n, m)$ and $\psi(x) = a \mid xc \in p^-$. Projecting $\theta(n, m)$ onto N(r) we get $\psi(z) \in r^+$. Since $\psi(x) \in p^-$, we have $\psi(y) \in q^-$.

Let us prove that $q \sim p$ over ψ . Indeed let $\psi \to \pi$. If $\pi \in p$, then (since $p = q \cap r$) $\pi \in q$. Let $\pi \in q$. Since $\psi \in r$ and $\psi \to \pi$, $\pi \in r$. Thus (adding) we get $\pi \in p$.

It remains to check that $\varphi' \to \psi$. Since φ' and ψ are on the same line v(x) + v(y) = v(a), they are comparable. If $\psi \to \varphi'$, then $\varphi' \in r$ and we can take $\psi = \varphi'$. \Box

From this proposition it follows that q and r look like complementary sets of teeth for a saw.

Figure 8:

Proposition 5.2 Let $N(p) = N(q) \oplus N(r)$. Then p, q and r are related as the graphs of the functions f(p), f(q) and f(r) in Figure 7 on the right.

Proof. It is clear that p = q in a neighborhood of at least one pp-formula φ (for instance one can take $x = 0 \in q^-$ and apply Lemma 5.1). We show that $\psi \in r$ for every pp-formula with $\psi \in p^-$ from this neighborhood of q. Indeed let us assume that $\psi \in r^-$. Then by Lemma 5.1 there exists $\xi \in r^- \cap q^+$ such that $\psi \to \xi$ and $r \sim p$ over ξ (see Figure 7 on the left).

Then $\xi \in p^-$ which contradicts $q \sim p$ over φ . \Box

Let us return back to the example in Figure 4 on the right. For the (canonical) decomposition $N(p) = N(q') \oplus N(r)$ as shown in Figure 8 on the right we get $N(q') \cong N(q)$.

PP-types p and q are called *orthogonal* if N(p) and N(q) do not have an isomorphic nonzero direct summand.

Corollary 5.3 Let $N(p) = N(q) \oplus N(r)$. Then the modules N(q) and N(r) are orthogonal.

Proof. It suffices to prove that for any such decomposition, N(q) is not a direct summand of N(r). Indeed if $N(q) = N(s) \oplus N(q')$ and $N(r) = N(s) \oplus N(r')$, then $N(p) = N(s) \oplus (N(s) \oplus N(q) \oplus N(r'))$.

Assume that N(q) is isomorphic to a direct summand of N(r). Since $x = 0 \in q^-$, by Lemma 5.1 there is $\varphi \in q^- \cap r$ such that $q \sim p$ over φ . Also by Proposition 4.1 we may assume that the φ -neighborhood of q is isomorphic to a ψ -neighborhood of $r, \psi \in r^-$, along a line v(x)+v(y)=v(a).

By Lemma 5.1 again, there is $\theta \in r^- \cap q$ such that $\psi \to \theta$ and $r \sim p$ over θ . Let θ go to θ' under the translation identifying the ψ -neighborhood of r and the φ -neighborhood of q (see Figure 8 on the left), in particular $\theta' \in q^-$. Since $\varphi \to \theta', \theta' \in r$. But the pp-formulae $\theta \in r^- \cap q$ and $\theta' \in q^- \cap r$ are on the same line, hence comparable, a contradiction. \Box

6 Corollaries

Recall that a von Neumann regular ring S is called *abelian regular*, if all idempotents of S are central. It is equivalent that S be regular and (left and right) distributive. We say that the ring S is *semiregular* if $S/\operatorname{Jac}(S)$ is regular and idempotents can be lifted modulo $\operatorname{Jac}(S)$. It has been mentioned above that the endomorphism ring S of an arbitrary pure injective module (over any ring) is semiregular and $S/\operatorname{Jac}(S)$ is right self-injective. It is not true in general that $S/\operatorname{Jac}(S)$ is abelian regular since, for $T = \operatorname{End}(M \oplus M)$, $T/\operatorname{Jac}(T) = M_2(S/\operatorname{Jac}(S))$ is not.

Lemma 6.1 Let p be a pp-type over a commutative valuation domain and S = End(N(p)). Then S/Jac(S) is an abelian regular ring.

Proof. Assume that $S' = S/\operatorname{Jac}(S)$ is not abelian regular. Then by [4, Thm. 3.4], there is a direct summand of the right S'-module S' of the form $T' \oplus T'$. Since idempotents can be lifted, one can lift this decomposition to $S_S = T \oplus T \oplus U$. Since there is a 1-1 correspondence between direct sum decompositions of S_S and N(p), it follows that $N(p) = K \oplus K \oplus L$, a contradiction to Corollary 5.3. \Box

An idempotent e of a von Neumann regular ring S is called *abelian*, if the ring eSe is abelian regular. A regular right self-injective ring S is of *type I* if the twosided ideal generated by abelian idempotents is essential as a right ideal in S.

Proposition 6.2 Let M be a pure injective module over a commutative valuation domain and S = End(M). Then S' = S/Jac(S) is a von Neumann regular right self-injective ring of type I and idempotents can be lifted modulo Jac(S).

Proof. It remains to prove that S' is of type I. If $0 \neq m \in M$ and T = End(N(m)), then T/Jac(T) is abelian regular by Lemma 6.1. So we can apply [3, p. 33]. \Box

A module M is called *Bezout* if every finitely generated submodule of M is cyclic.

Proposition 6.3 Let M be a pure injective module over a commutative valuation domain and S = End(M). Then $_{S}M$ is a Bezout module.

Proof. By [6], ${}_{S}M$ is a distributive module. Also by [10, 3.33] every distributive module over a ring that is abelian regular modulo its radical is Bezout. So by Lemma 6.1 every module N(p) is Bezout.

Let $m, n \in M$: we prove that $Sm + Sn \subseteq {}_{S}M$ is a cyclic module. Decompose $M = N(m) \oplus N$, where m = (m, 0) and $n = (n_1, n_2)$. Also set $N = N(n_2) \oplus N'$, i.e. $N = N(m) \oplus N(n_2) \oplus N'$ with m = (m, 0, 0), $n = (n_1, n_2, 0)$ in this decomposition. Since $m, n_1 \in N(m)$, there is $k_1 \in N(m)$ such that $eSem + eSen_1 = eSek_1$, where e is the projection onto N(m), in particular $Sm + Sn_1 = Sk_1$. Let $k = (k_1, n_2, 0)$. Then $\pi_1(k) = k_1, \pi_2(k) = n_2$, hence $m, n_1, n_2 \in Sk$ which yields $m, n \in Sk$. Since $k \in Sm + Sn$, Sm + Sn = Sk. \Box

The author is indebted to M. Prest for helpful comments.

Department of Mathematics, Moscow State Social University, Losinoostrovskaya 24, 107150 Moscow, Russia E-mail address: punins@orc.ru

References

- P. Eklof P. and I. Herzog, Some model theory over a serial ring, Ann. Pure Appl. Logic, 72 (1995), 145–176.
- [2] L. Fuchs and L. Salce, Modules over valuation domains, Lect. Notes Pure Appl. Math., Marcel Decker, 97 (1985).
- [3] A. Facchini, Decompositions of algebraically compact modules, Pacific J. Math., 116(1) (1985), 25–37.
- [4] K. R. Goodearl, Von Neumann regular rings, Pitman, 1979.
- [5] G.E. Puninski, Superdecomposable pure injective modules over commutative valuation rings, Algebra i Logika, **31**(6) (1992), 377–386.

- [6] G.E. Puninski, Indecomposable pure injective modules over chain rings, Trans. Moscow Math. Soc., 56 (1995), 137–147.
- [7] G. Puninski, Serial rings, manuscript of projected book, 1999.
- [8] M. Prest, Model theory and modules. Cambridge University Press, London Math. Soc. Lecture Note Series, 130 (1988).
- [9] L. Salce, Valuation domains with superdecomposable pure injective modules, Lect. Notes Pure Appl. Math., 146 (1993), 241–245.
- [10] A.A. Tuganbaev, Semidistributive rings and modules, Mathematics and its applications, 449, Kluwer, 1998.
- [11] M. Ziegler, Model theory of modules, Ann. Pure Appl. Logic, 26 (1984), 149–213.
- [12] B. Zimmermann-Huisgen and W. Zimmermann, Algebraically compact rings and modules, Math. Z., 161 (1978), 81–93.