Белорусский государственный университет

УТВЕРЖДАЮ	
Декан химического факультет	ra
Д.В. Свир	идов
(подпись)	
(дата утверждения)	
Регистрационный № УД-	/баз.

ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Учебная программа для специальности 1-31 05 01 Химия (по направлениям)

Направления специальности:

1-31 05 01-01 Химия (научно-производственная деятельность)
1-31 05 01-02 Химия (научно-педагогическая деятельность)
1-31 05 01-03 Химия (фармацевтическая деятельность)
1-31 05 01-04 Химия (охрана окружающей среды)

Минск 2010 г.

СОСТАВИТЕЛИ:

В.В.Егоров, профессор кафедры аналитической химии Белорусского государственного университета, доктор химических наук, профессор;

В.Л.Ломако, доцент кафедры аналитической химии Белорусского государственного университета, кандидат химических наук, доцент;

Е.М.Рахманько, заведующий кафедрой аналитической химии Белорусского государственного университета, доктор химических наук, профессор.

РЕЦЕНЗЕНТЫ:

Кафедра аналитической химии учреждения образования «Белорусский государственный технологический университет».

А. И. Ратько, заведующий лабораторией адсорбентов и адсорбционных процессов ГНУ «Институт общей и неорганической химии» НАН Беларуси, член-корреспондент НАН Беларуси, доктор химических наук, профессор.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой аналитической химии Белорусского государственного университета (протокол N_2 от <u>.06. 10)</u>;

Учебно-методической комиссией химического факультета Белорусского государственного университета

(протокол № 1 от 07.09.10).

Ответственный за редакцию: Е.М.Рахманько

Ответственный за выпуск: В.В.Егоров

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

В современном мире подавляющее большинство задач, связанных с получением информации о качественном и количественном химическом составе различных объектов, решаются с помощью физико-химических методов анализа (оптических, хроматографических, электрохимических и др.). Поэтому физико-химические методы анализа являются важнейшим разделом современной аналитической химии, изучение которого совершенно необходимо для подготовки квалифицированных специалистов-химиков.

Цель данного курса — фундаментальная и практическая подготовка студентов химических специальностей в области физико-химических методов анализа.

Задачи курса:

- формирование у студентов системных знаний об основных физических законах и процессах, лежащих в основе современных физико-химических методов анализа, а также о механизмах и принципах генерирования аналитического сигнала, связанных с индивидуальными химическими свойствами определяемых веществ;
- ознакомление студентов с методами и приемами работы на основных типах аналитического оборудования и с методами пробоподготовки анализируемых объектов различного происхождения;
- формирование у студентов соответствующего кругозора, позволяющего осознавать роль аналитической химии в решении насущных практических задач (контроль технологических процессов и качества готовой продукции; мониторинг состояния окружающей среды; медицинская биохимическая диагностика и др.), ориентироваться в возможностях различных методов применительно к анализу реальных объектов и грамотно формулировать постановку аналитической задачи.

В результате изучения дисциплины обучаемый должен знать:

- теоретические основы генерирования и регистрации аналитического сигнала для соответствующих методов анализа;
- основные типы соответствующего аналитического оборудования, наиболее принципиальные технические решения;
- характер научных и практических задач, решаемых с помощью различных физико-химических методов анализа;
 - характер данных, получаемых с помощью этих методов;
 - основные метрологические характеристики соответствующих методов;
- .- основные приемы пробоотбора и пробоподготовки различных реальных объектов для последующего инструментального анализа.

уметь:

- делать осознанный выбор адекватного метода анализа, с учетом особенностей аналита и анализируемого объекта;
- обращаться с представленными на лабораторном практикуме типами аналитического оборудования;
- проводить обработку и интерпретацию первичных экспериментальных данных, полученных с использованием изучаемых методов анализа.

Преподавание курса базируется на общетеоретической подготовке, полученной студентами при изучении курсов физики, неорганической, физической, органической и аналитической (химические методы анализа) химии и проводится по модульному принципу с выделением трех основных модулей, в соответствии со сложившимися традициями изучения данной дисциплины в ведущих университетах Беларуси и России:

- электрохимические методы анализа;
- спектроскопические (преимущественно, с использованием излучения в видимой и ближней УФ области) методы анализа;
 - хроматографические методы анализа.

Во вводной части курса рассматриваются современное состояние аналитической химии и роль физико-химических методов анализа, дается классификация физико-химических методов анализа. Отдельное внимание уделяется практическим и научным задачам, решаемым с помощью данных методов, и перспективам развития физико-химических методов анализа.

Программа задает объем материала, подлежащего изучению в курсе, и объем сведений по каждому изучаемому вопросу.

Преподавание курса предусматривает проведение лекций, семинарских и лабораторно-практических занятий, которые должны быть обеспечены техническими средствами обучения, наглядными материалами соответствующим лабораторным оборудованием и реактивами.

Часть вопросов описательного характера, перечисленных в программе, выносится для самостоятельного изучения, в целях развития у студентов навыков работы с учебной и научной литературой, указанной в конце программы.

Лабораторные занятия предусматривают овладение навыками работы на различных типах приборов по электрохимическим, оптическим и хроматографическим методам анализа, приготовлению стандартных растворов, используемых для градуировки приборов, и проведению количественного анализа различных объектов (сплавы, почвы, продукты питания и др.) на содержание целевых компонентов.

Организация самостоятельной работы студентов осуществляется с использованием современных информационных технологий путем размещения в сетевом доступе комплекса учебных и учебно-методических материалов (рабочая программа курса, методические указания к лабораторным занятиям, задания в тестовой форме для самоконтроля, список рекомендуемой литературы и др.).

Эффективность самостоятельной работы студентов может проверяться путем текущего и итогового контроля знаний в форме устного опроса при выполнении лабораторных работ, семинаров, контрольных работ в традиционном и тестовом (в том числе, компьютерном) вариантах по разделам курса.

Программой предусматривается также написание реферативных работ по индивидуальным заданиям или по выбору.

Учебный курс рассчитан на 214 часов, в том числе 102 часа аудиторной работы.

ПРИМЕРНЫЙ ТЕМАТИЧЕСКИЙ ПЛАН

№ раз- дела, тем ы	Название раздела, темы	лекции	семи- нарские занятия	КСР	лабора- торные занятия
1	Введение. Физико-химические методы анализа как раздел современной аналитической химии. Состояние и тенденции развития.	2			
2	Электрохимические	16	12	8	12
0.1	методы анализа.		1		
2.1	Общая характеристика электрохимических методов. Возникновение скачка потенциала на межфазовой границе. Типы электрохимических ячеек.	2	1	1	
2.2	Потенциометрия. Уравнение Нернста. Индикаторный электрод и электрод сравнения. Техника измерения э.д.с.	2	1	1	
2.3	Ионоселективные электроды. Классификация по типам электродно-активных веществ и механизм функционирования.	2	2	1	
2.4	Концентрационные пределы функционирования ИСЭ. Влияние посторонних ионов на работу ИСЭ.	2	2	1	
2.5	Прямая потенциометрия, потенциометрическое титрование и их практическое применение.	2	1	1	8
2.6	Вольтамперометрия. Основные характеристики полярографической волны. Процессы, протекающие на ртутной капле при снятии полярограммы. Уравнения Ильковича и Гейровского-	2	2	1	4

	111	0	1	I	
	Ильковича и их				
	применение.	_	_		
2.7	Неклассические варианты	2	2	1	
	полярографии (инверсион-				
	ная, переменнотоковая,				
	импульсная, осциллогра-				
	фическая). Вольтамперо-				
	метрия с твердыми				
	микроэлектродами. Ампе-				
	рометрическое титрование.				
2.8.	Кулонометрия, кулономет-	2	1	1	
	рическое титрование,				
	электрогравиметрия, кон-				
	дуктометрия, капиллярный				
	электрофорез.				
3	Спектроскопические	10	5	5	12
	методы анализа.				
3.1	Основные типы взаимодей-	2	1	1	
	ствия электромагнитного				
	излучения с веществом.				
	Спектры атомов и молекул.				
	Классификация спектроско-				
	пических методов анализа.				
3.2	Теоретические основы	2	1	1	4
	атомно-эмиссионного				
	анализа. Основные типы				
	приборов, практическое				
	применение.				
3.3	Теоретические основы	2	1	1	4
	атомно-абсорбционного				
	анализа. Основные типы				
	приборов, практическое				
	применение.				
3.4	Теоретические основы	2	1	1	
	молекулярно-абсорцион-				
	ного и флуоресцентного				
	анализа. Основные типы				
	приборов.				
3.5	Методы получения погло-	2	1	1	4
	щающих сред для моле-				
	кулярно-абсорбционного				
	анализа, практическое				
	применение.				
4	Хроматографические	8	5	3	4
	методы анализа.				
	1 ' '		ı	1	1

5	Всего:	36	22	16	28
	применения.				
	осуществления и области				
	хроматография. Принципы				
	графия. Тонкослойная				
	Эксклюзионная хромато-				
4.4	Ионная хроматография.	2	1	1	
	тографа. Основные типы детекторов, практическое применение.				
	Схема жидкостного хрома-				
	жидкостная хроматография.				
4.3	Высокоэффективная	2	2		
	нений, области применения.	_			
	чения легколетучих соеди-				
	детекторов, способы полу-				
	графа. Основные типы				
	Схема газового хромато-				
4.2	Газовая хроматография.	2	1	1	4
	кинетическая теория.				
	параметры хроматограммы,				
	методов анализа и их классификация. Основные				
	хроматографических				
4.1	Общая характеристика	2	l	1	

Содержание дисциплины

1. Введение

Основные проблемы современной аналитической химии: снижение предела обнаружения; повышение точности и избирательности; обеспечение экспрессности; создание методов неразрушающего анализа; локальный анализ; дистанционный анализ. Тенденции развития аналитической химии: инструментализация, автоматизация, математизация, миниатюризация, увеличение доли физических и биохимическихметодов, переход к многокомпонентному анализу, создание сенсоров и тест-методов.

Физико-химические методы анализа как раздел современной аналитической химии: определение, этапы развития, классификация, решаемые задачи, место среди других методов анализа.

Научная и учебно-методическая литература по физико-химическим методам анализа.

2. Электрохимические методы анализа

Общая характеристика электрохимических методов. Основные типы электрохимических ячеек (электролитическая ячейка, гальванический элемент) и их использование в электрохимических методах анализа. Механизм возникновения межфазового потенциала на межфазовой границе электрод — раствор. Понятия индикаторного электрода и электрода сравнения. Водородная шкала электродных потенциалов. Равновесные и неравновесные электрохимические системы. Явления, возникающие при протекании тока (омическое падение напряжения, концентрационная и кинетическая поляризация). Поляризационные кривые и их использование в различных электрохимических методах.

2.1. Потенциометрия

2.1.1. Прямая потенциометрия

Сущность метода. Зависимость межфазового потенциала от активности ионов в растворе. Условие Гуггенгейма. Уравнение Нернста.

Э.д.с. гальванической ячейки как сумма межфазовых потенциалов. Правила знаков э.д.с. и электродных потенциалов. Техника измерения потенциала.

Основные типы немембранных индикаторных электродов, применяемых в прямой потенциометрии: ионно-металлические электроды, электроды второго рода, окислительно-восстановительные, газовые. Механизм функционирования и важнейшие представители.

Ионоселективные (мембранные) электроды, их классификация по типам мембран: стеклянные электроды, электроды на основе

труднорастворимых кристаллических гомогенными осадков c И гетерогенными мембранами, жидкостные и пленочные электроды на основе жидких ионообменников и нейтральных переносчиков; устройство функционирования; важнейшие представители. принципы Основные характеристики ионоселективных электродов: наклон электродной функции, коэффициент селективности, концентрационные пределы функционирования, время отклика и факторы, их определяющие. Уравнения Никольского и Эйзенмана-Никольского.

Важнейшие электроды сравнения: принцип функционирования и конструктивные особенности. Диффузионный потенциал: причины возникновения и пути устранения. Формула Гендерсона.

Ионометрия и основные варианты ее применения: метод градуировочного графика, метод ограничивающих растворов, метод стандартного раствора, методы добавок; их сравнительная характеристика. Основные источники погрешностей метода прямой потенциометрии и пути их устранения.

Сложные устройства на основе ионоселективных электродов: газовые селективные электроды, ферментные электроды, ионоселективные полевые транзисторы. Проточный и проточно-инжекционный потенциометрический анализ.

Примеры практического применения ионометрии.

2.1.2. Потенциометрическое титрование

Изменение электродного потенциала в процессе титрования. Способы обнаружения конечной точки титрования: метод касательных, методы первой и второй производных, метод Грана. Факторы, определяющие величину скачка потенциала. в кислотно-основном, комплексометрическом, осадительном и окислительно-восстановительном титровании. Использование реакций кислотно-основных, осаждения, комплексообразования, окисления-восстановления.

Примеры практического применения.

Сравнительная характеристика методов прямой потенциометрии и потенциометрического титрования.

2.2. Вольтамперометрические методы

Общие принципы вольтамперометрии. Процессы, протекающие в электролитической ячейке с поляризующимся индикаторным электродом и неполяризующимся электродом сравнения. Требования к индикаторным представители. электродам электродам сравнения; важнейшие И классификация Индикаторные электроды И вольтамперометрических методов. Сравнительная характеристика ртутного капающего электрода и твердых микроэлектродов. Трехэлектродные ячейки.

2.2.1. Классическая полярография

Схема полярографической ячейки и процессы, в ней протекающие. Полярографическая волна и характеристики ее отдельных участков. Конденсаторный, миграционный, диффузионный токи. Предельный диффузионный ток. Уравнение Ильковича.

Уравнение обратимой полярографической волны Ильковича - Гейровского. Потенциал полуволны и факторы, его определяющие. Полярографические максимумы: причины возникновения, способы устранения, возможности применения для определения поверхностно-активных веществ. Составляющие полярографического фона и их роль в проведении полярографического анализа.

Количественный и качественный полярографический анализ с использованием ртутного капающего электрода: возможности и ограничения.

Примеры практического применения.

2.2.2. Современные разновидности вольтамперометрии

Способы улучшения соотношения фарадеевского и емкостного токов: временная и фазовая селекция аналитического сигнала. Переменно-токовая полярография: синусоидальная и квадратно-волновая. Импульсная полярография: нормальная и дифференциальная. Полярография с быстрой линейной разверткой потенциала (осциллографическая). Циклическая вольтамперометрия. Инверсионная анодная полярография с накоплением.

Вольтамперометрия с использованием твердых микроэлектродов. Катодная инверсионная вольтамперометрия. Вольтамперометрия с использованием химически модифицированных электродов. Адсорбционная инверсионная вольтамперометрия.

Примеры практического применения.

Сравнительная характеристика вольтамперометрических методов с использованием ртутного капающего и твердых микроэлектродов.

2.2.3. Амперометрическое титрование

Сущность метода. Индикаторные электроды. Выбор потенциала индикаторного электрода. Амперометрическое титрование с одним и двумя поляризованными электродами. Виды кривых титрования.

Примеры практического применения.

2.3. Кондуктометрия

Принципы кондуктометрии: удельная и эквивалентная электропроводность; уравнение Кольрауша и предельная эквивалентная электропроводность солей и ионов; схема установки. Прямая

кондуктометрия и кондуктометрическое титрование. Применение для контроля качества чистой воды, солености почв, в ионной хроматографии.

2.4. Другие электрохимические методы анализа

2.4.1. Кулонометрия

Теоретические основы. Закон Фарадея. Способы определения количества электричества: электронные и химические интеграторы. Прямая титрование. кулонометрическое Кулонометрия кулонометрия И постоянном токе и постоянном потенциале. Внешняя и внутренняя генерация Титрование кулонометрического титранта. электроактивных электронеактивных компонентов. Определение конечной точки титрования. Преимущества и ограничения метода кулонометрического титрования по сравнению с другими титриметрическими методами.

Примеры практического применения.

2.4.2. Электрогравиметрия

Сущность и общая характеристика электрогравиметрических методов. Практическое применение.

2.4.3. Капиллярный электрофорез

Схема установки, понятия электроосмотического потока и электрофоретической подвижности; принципы разделения веществ по заряду и размеру.

Сравнительная характеристика чувствительности и избирательности, областей применения электрохимических методов.

3. Спектроскопические методы анализа

Спектр электромагнитного излучения (энергия, способы ее выражения; термины, символы и единицы энергии излучения; диапазоны излучения, типы энергетических переходов). Основные типы взаимодействия вещества с излучением: эмиссия (тепловая, люминесценция), поглощение, рассеяние. Классификация спектроскопических методов по энергии. Классификация спектроскопических методов на основе спектра электромагнитного (атомная, абсорбционная, излучения молекулярная, эмиссионная спектроскопия).

Спектры атомов. Основные и возбужденные состояния атомов, характеристики состояний. Энергетические переходы. Правила отбора. Законы испускания и поглощения. Вероятности электронных переходов и времена жизни возбужденных состояний. Характеристики спектральных линий: положение в спектре, интенсивность, естественная ширина.

Спектры молекул; их особенности. Схемы электронных уровней молекулы. Представление о полной энергии молекул как суммы электронной, колебательной и вращательной. Зависимость виды спектра от агрегатного состояния вещества.

Основные законы поглощения электромагнитного излучения (Бугера) и закон излучения (Ломакина-Шейбе). Связь аналитического сигнала с концентрацией определяемого соединения.

Аппаратура. Способы монохроматизации лучистой энергии. Классификация спектральных приборов. Характеристики спектральных приборов: дисперсия, разрешающая способность, светосила. Приемники излучения: фотоэмульсия, фотоэлементы, фотоумножители, полупроводниковые приемники излучения. Инструментальные помехи. Шумы и отношение сигнал-шум; оценка минимального аналитического сигнала.

3.1. Методы атомной оптической спектроскопии

3.1.1. Атомно-эмисионный метод

Принцип метода. Спектры испускания. Методы атомизации и возбуждения. Пламенный вариант метода. Другие методы возбуждения (дуговые, искровые, лазерные, пламенные) и их основные характеристики. Процессы, протекающие при возбуждении, и его механизм. Методы регистрации аналитического сигнала (спектрометрия, спектрография). Пламенные фотометры и спектрофотометры. Спектрофотометры с регистрацией полного спектра испускания. Диодная линейка. Качественный и полуколичественный атомно-эмиссионный анализ.

Количественный атомно-эмиссионный анализ. Определяемые элементы и области применения.

3.1.2. Атомно-абсорбционный метод

Методы атомизации. Пламёна, их составы и характеристики. Электротермическая атомизация в графитовой кювете — платформе Львова. Гидридный метод и метод холодного пара. Атомно-абсорбционные спектрофотометры. Эффекты Лоренца и Доплера и их значение для выбора источника излучения. Источники излучения: лампы Уолша, источники сплошного излучения с использованием дифракционной решетки и др. Сравнительная метрологическая характеристика эмиссионного и абсорбционного методов и области их применения.

3.1.3. Атомно-флуоресцентный метод

Принцип метода; особенности и применение.

3.2.Методы молекулярной оптической (УФ и видимой) спектроскопии

3.2.1. Молекулярная абсорбционная спектроскопия (спектрофотометрия)

Связь химической структуры соединения с абсорбционным спектром. Связь оптической плотности с концентрацией. Закон светопоглощения Ламберта-Бугера-Бера. Отклонения от закона, их причины (химические; температура, эффекты, обусловленные растворителем, рассеяние света, монохроматизация излучения). Понятие об истинном и кажущемся молярном коэффициенте поглощения. Инструментальные погрешности; оптимальный интервал измеряемых значений оптической плотности.

Способы определения концентрации веществ. Измерение высоких, низких оптических плотностей (дифференциальный метод). Анализ многокомпонентных систем. Фотометрическое титрование.

Методы получения поглощающих сред. Реакции комплексообразования с органическими и минеральными лигандами. Органические реагенты. Применение органических реакций для получения окрашенных соединений. Биохимический анализ в медицине. Применение экстракции для получения окрашенных соединений. Экстракционнофотометрический анализ Катионные и анионные красители для получения окрашенных ионных ассоциатов. Другие типы реакций в молекулярно-абсорбционном анализе. Понятие контрастности фотометрических реакций.

Примеры практического применения метода.

Применение метода для исследования реакций (комплексообразования, протолитических, агрегации), сопровождающихся изменением спектров поглощения.

3.2.2. Молекулярная люминесцентная спектроскопии

Общая классификация молекулярной люминесценции (хемилюминесценция, биолюминесценция, электролюминесценция, фотолюминесценция). Схема Яблонского. Флуоресценция и фосфоресценция. Закон Стокса-Ломмеля. Правило зеркальной симметрии Левшина. Тушение люминесценции.

Сравнение возможностей молекулярной абсорбционной и люминесцентной (собственная люминесценция) спектроскопии при определении неорганических соединений. Преимущества люминесцентной спектроскопии при идентификации и определении органических соединений.

Место и роль спектроскопических методов в аналитической химии и химическом анализе.

4. Хроматографические методы анализа

Определение хроматографии. Понятие о подвижной и неподвижной фазах. Классификация методов по агрегатному состоянию подвижной и неподвижной фаз, по механизму разделения, по технике выполнения. Способы получения хроматограмм (фронтальный, вытеснительный, элюентный). Основные аналитические параметры хроматограммы: время (объем) удерживания, ширина пика у основания, площадь пика, степень разделения. Основные уравнения хроматографии. Селективность эффективность хроматографического разделения. Теория теоретических тарелок. Кинетическая теория. Уравнение Ван-Деемтера. Разрешение как фактор оптимизации хроматографического процесса. Качественный количественный хроматографический анализ.

4.1. Газовая хроматография

Газо-адсорбционная (газо-твердофазная) и газо-жидкостная хроматография. Сорбенты и носители, требования к ним. Механизм разделения. Схема газового хроматографа. Колонки, неподвижные и подвижные фазы. Основные типы детекторов: катарометр, пламенно-ионизационный, электронозахватный, масс-спектральный; их чувствительность и селективность. Способы получения летучих соединений. Области применения газовой хроматографии.

4.2. Жидкостная хроматография.

Виды жидкостной хроматографии. Преимущества высокоэффективной жидкостной хроматографии (ВЭЖХ). Схема жидкостного хроматографа. Насосы, колонки. Основные типы детекторов, их чувствительность и селективность.

4.2.1. Адсорбционная жидкостная хроматография

Нормально-фазовый и обращенно-фазовый варианты. Полярные и неполярные неподвижные фазы и принципы их выбора. Модифицированные силикагели как сорбенты. Подвижные фазы и принципы их выбора. Области применения адсорбционной жидкостной хроматографии.

4.2.2. Ионная хроматография

Строение и физико-химические свойства ионообменников. Ионообменное равновесие. Селективность ионного обмена и факторы его определяющие. Ионная хроматография как вариант высокоэффективной ионообменной хроматографии. Особенности строения и свойства сорбентов для ионной хроматографии. Одноколоночная и двухколоночная ионная

хроматография, их преимущества и недостатки. Ионохроматографическое определение катионов и анионов. Ион-парная и лигандообменная хроматография. Общие принципы. Подвижные и неподвижные фазы. Области применения.

4.2.3. Другие виды жидкостной хроматографии

Эксклюзионная хроматография. Общие принципы метода. Подвижные и неподвижные фазы. Особенности механизма разделения. Определяемые вещества и области применения метода.

Плоскостная хроматография. Общие принципы разделения. Способы получения плоскостных хроматограмм (восходящий, нисходящий, круговой, двумерный). Реагенты для проявления хроматограмм.

Бумажная хроматография. Механизмы разделения. Подвижные фазы. Преимущества и недостатки.

Тонкослойная хроматография. Механизмы разделения. Сорбенты и подвижные фазы. Области применения.

5. Основные объекты анализа

Биологические и медицинские объекты. Аналитические задачи в этой области. Санитарно-гигиенический контроль.

Объекты окружающей среды: воздух, природные и сточные воды, почвы, донные отложения. Характерные особенности и задачи их анализа.

Сельскохозяйственные объекты: продукция растениеводства и животноводства, почвы, минеральные удобрения и пестициды, корма. Ветеринарный биохимический анализ.

Промышленные объекты. Металлы, сплавы и другие продукты металлургической промышленности. Вещества особой чистоты (в том числе полупроводниковые материалы и др.). Растворы, рассолы, электролиты. Природные и синтетические органические вещества и элементоорганические соединения, полимеры. Нефтехимия. Анализ сырья и готовой продукции. Мониторинг технологических процессов.

Атомные материалы. Определение тория, урана, плутония, трансплутониевых элементов и некоторых продуктов деления

Геологические объекты. Анализ силикатов, карбонатов, железных, никель-кобальтовых руд, полиметаллических руд.

Специальные объекты анализа: токсичные и радиоактивные вещества, токсины в пищевых продуктах, наркотики, взрывчатые и легковоспламеняющиеся вещества, газы, космические объекты

Примерная тематика лабораторных занятий

Лабораторная работа № 1. Техника безопасности. Охрана труда.

Потенциометрическое титрование. *Кислотно-основное титрование. Определение индивидуальных кислот (соляной, уксусной, борной); определение соляной и уксусной кислот при совместном присутствии. *Окислительно-восстановительное титрование. Определение содержания железа в сплаве бихроматометрическим методом. *Осадительное потенциометрическое титрование. Определение хлорида и иодида при совместном присутствии аргентометрическим методом; определение произведения растворимости иодида серебра по данным потенциометрического титрования.

Лабораторная работа № 2. **Ионометрия.** *Определение содержания нитратов в почве. *Определение содержания калия в почве. *Определение содержания фторидов в солях и в питьевой воде. Определение нижнего предела обнаружения и коэффициентов селективности нитратселективного (калий-селективного, фторид-селективного) электродов.

Лабораторная работа № 3. **Полярография.** Регистрация полярографической волны для катиона Cd^{2+} . Получение полярографического спектра смеси катионов Cd^{2+} , Cu^{2+} , Zn^{2+} . Определение содержания меди и цинка в цветных сплавах методом калибровочного графика.

Лабораторная работа № 4. **Атомно-эмиссионный анализ.** *Пламенно-фотометрическое определение содержания калия и натрия в доломите методом градуировочного графика. *Определение солей аммония, калия и магния при совместном присутствии с применением ионного обмена и фотометрии пламени.

Лабораторная работа № 5. **Атомно-абсорбционный анализ.** Определение металлов (железа, никеля, меди) в сплавах методом градуировочного графика.

Лабораторная работа № 6. **Молекулярно-абсорбционный анализ.** Определение содержания железа в сплаве роданидным методом.

Лабораторная работа № 7. **Газовая хроматография.**... Определение крепости спиртных напитков методом внутреннего стандарта. Определение поправочных коэффициентов, изучение влияние силы моста детектора на чувствительность определения, зависимости степени разделения, числа теоретических тарелок и высоты эквивалентной теоретической тарелке от температуры колонки.

^{*}На усмотрение преподавателя.

Примерная тематика курсовых работ по общему курсу «Физико-химические методы анализа»

Электрохимические методы анализа

- 1. Амперометрическое титрование.
- 2. Анионселективные жидкостные и пленочные электроды в анализе биологических объектов.
- 3. Анионселективные электроды на основе высших четвертичных аммониевых солей.
- 4. Влияние посторонних веществ на функционирование ионоселективных электродов.
- 5. Вольтамперометрия. Электроды в вольтамперометрии.
- 6. Жидкостные и пленочные ионоселективные электроды.
- 7. Инверсионная вольтамперометрия.
- 8. Инверсионная и переменно-токовая полярография.
- 9. Капиллярный электрофорез современный высокочувствительный метод анализа.
- 10. Катионселективные жидкостные и пленочные электроды на основе жидких катионитов и ионных ассоциатов.
- 11. Количественные методы в потенциометрии (метод градуировочного графика, добавок, Грана, потенциометрическое титрование).
- 12. Кондуктометрия и ее применение в анализе и в физико-химических исследованиях.
- 13. Кулонометрический анализ.
- 14. Неводное кислотно-основное потенциометрическое титрование и его применение в анализе.
- 15. Нитрат-селективный электрод и его применение.
- 16.Полярографическое определение органических соединений.
- 17. Полярография как одна из разновидностей вольтамперометрии.
- 18.Стеклянные электроды для определения рН и их применение в анализе различных объектов.
- 19. Твердые электроды на основе труднорастворимых соединений.
- 20. Теория селективности ИСЭ.
- 21. Ферментные электроды.
- 22. Электроды на основе стекол для определения ионов металлов.
- 23. Электроды сравнения в потенциометрии.

Спектроскопические методы анализа

- 24. Атомно-абсорбционный анализ и его аналитические возможности.
- 25. Атомно-флуоресцентная спектроскопия.
- 26. Атомно-эмиссионные методы определения элементов. Виды атомизации и возбуждения элементов.
- 27. Инфракрасная спектроскопия.

- 28. Масс-спектральный анализ и его аналитическое применение.
- 29. Методы молекулярно-абсорбционного определения веществ.
- 30.Получение поглощающих сред в фотометрическом анализе.
- 31. Способы атомизации в атомно-абсорбционном анализе.
- 32. УФ-спектрометрия в анализе.
- 33. Флуоресцентный анализ и его применение в аналитической химии.
- 34. Экстракционно-фотометрический анализ.
- 35. Экстракционно-фотометрическое определение металлов при анализе объектов окружающей среды.

Хроматографические методы анализа

- 36.Высокоэффективная жидкостная хроматография и ее применение в анализе
- 37. Высокоэффективная хроматография.
- 38. Газовая хроматография и ее особенности.
- 39.Гель-хроматография.
- 40. Детекторы в хроматографии.
- 41. Ионная хроматография.
- 42. Ионная хроматография в анализе объектов окружающей среды.
- 43. Капиллярная газовая хроматография и ее применение в анализе объектов окружающей среды.
- 44. Обзор хроматографических методов анализа.
- 45. Разновидности и области применения газовой хроматографии.
- 46. Теория ГЖХ метода.
- 47. Хромато-масс-спектральный анализ.
- 48. Хроматографические материалы.

Другие физико-химические методы анализа

- 49. Гибридные методы в аналитической хитмии.
- 50.Инфракрасная спектроскопия в аналитической химии.
- 51. Кинетические методы анализа.
- 52. Компьютерные методы в аналитической химии.
- 53. Методы анализа, основанные на радиоактивности.
- 54.Проточно-инжекционный анализ.
- 55. Процесс анализа: выбор методики, пробоотбор, консервирование, транспортировка и хранение, пробоподготовка, определение, обработка данных.
- 56.Селективность и пределы обнаружения в физико-химических методах анализа.
- 57.С-изотопный анализ археологических объектов.
- 58. Термический анализ.
- 59. Экспрессные методы анализа.

Аналитическая химия элементов, классов соединений, объектов

- 60. Задачи аналитической химии и их значение для общества.
- 61. Метод ВЭЖХ в анализе лекарственных объектов.
- 62. Методы анализа продуктов питания.
- 63. Методы анализа минеральных удобрений.
- 64. Методы определения бария, стронция и бериллия.
- 65. Методы определения белков.
- 66.Методы определения канцерогенных веществ нитрозоаминов, полициклических углеводородов и др.
- 67. Методы определения лития, рубидия и цезия.
- 68. Методы определения общего содержания органических веществ.
- 69.Методы определения радионуклидов U^{238} , Sr^{90} и др.
- 70. Молекулярно-абсорбционный анализ в биохимических исследованиях.
- 71. Нефтехимический анализ.
- 72.Потенциометрическое определение электролитов плазмы крови и других биологических жидкостей.
- 73. Решение аналитических проблем в науке об окружающей среде.
- 74. Физико-химические методы анализа в криминалистике.
- 75. Физико-химические методы анализа цветных сплавов.
- 76. Физико-химические методы анализа черных сплавов.
- 77. Физико-химические методы определения азотсодержащих соединений.
- 78. Физико-химические методы определения аминокислот.
- 79. Физико-химические методы определения гормонов.
- 80. Физико-химические методы определения драгметаллов.
- 81. Физико-химические методы определения железа в различных видах вод.
- 82. Физико-химические методы определения кадмия и свинца.
- 83. Физико-химические методы определения калия и натрия в физиологических объектах.
- 84. Физико-химические методы определения кобальта, никеля, цинка, марганца.
- 85. Физико-химические методы определения нитратов и нитритов.
- 86. Физико-химические методы определения поверхностно-активных веществ.
- 87. Физико-химические методы определения ртути.
- 88. Физико-химические методы определения сахаров.
- 89. Физико-химические методы определения сульфатов, сульфитов, тиосульфатов, сульфидов.
- 90. Физико-химические методы определения тяжелых металлов.
- 91. Физико-химические методы определения фосфорсодержащих соединений.
- 92. Физико-химические методы определения цианидов и роданидов.
- 93. Физико-химические методы определения хлоридов, бромидов, иодидов в объектах окружающей среды.

- 94. Физико-химические методы определения элементов подгруппы мышьяка.
- 95. Экспрессные методы анализа.
- 96. Электрохимические методы определения алюминия и железа.
- 97. Электрохимические методы определения щелочных металлов.
- 98. Элементный органический анализ.
- 99. Ультрамикроанализ.
- 100.Современные тенденции и перспективы развития физико-химических методов анализа.

101 – 150. Произвольный выбор

Литература

Основная

- 1. Основы аналитической химии /под ред. Ю.А. Золотова. В 2-х кн. М.: Высшая школа. 2004. 361, 503 с.
- 2. Аналитическая химия. Проблемы и подходы /под ред. Р. Кельнера, Ж-М. Мерме, М. Отто и М. Видмера. В 2-х т. М.: Мир, 2004. 608, 728 с.
- 3. Васильев В.П. Аналитическая химия. В 2-х ч. М.: Высшая школа. 1989. 320, 384 с.
- 4. Скуг Д., Уэст Д. Основы аналитической химии. В 2-х т. М.: Мир, 1979. 480, 438 с.
- 5. Фритц Дж., Шенк Г. Количественный анализ. М.: Мир, 1978. 557 с.
- 6. Юинг Г. Инструментальные методы химического анализа. М.: Мир, 1989. $608~\rm c.$
- 7. Кунце У., Шведт Г. Основы качественного и количественного анализа. М.: Мир, 1997. 424 с.
- 8. Брицке М.Э. Атомно-абсорбционный спектрохимический анализ. М.: Химия, 1982. 224 с.
- 9. Кристиан Г. Аналитическая химия. В 2-х т. М.: БИНОМ. Лаборатория знаний, 2009. 623, 504 с.
- 10. Ляликов Ю.С. Физико-химические методы анализа. М.: Химия, 1974. 536 с.

Дополнительная

- 11. М. Отто. Современные методы аналитической химии. В 2-х т. М.: Техносфера, 2003. 412, 281 с.
- 12. Пиккеринг У.Ф. Современная аналитическая химия. М: Химия, 1977. 558с.
- 13. Петерс Д., Хайес Дж., Хифтье Г. Химическое разделение и измерение: теория и практика аналитической химии. В 2-х кн. М.: Химия, 1978. 816 с.
- 14. Золотов Ю.А. Аналитическая химия: проблемы и достижения. М.: Наука, 1992. 288 с.
- 15. Дорохова Е.Н., Прохорова Г.В. Задачи и вопросы по аналитической химии. М.: Мир, 2001. 268 с.
- 16. Практическое руководство по физико-химическим методам анализа /под ред. И.П.Алимарина и В.М.Иванова. М.: Изд-во Моск. ун-та,1987. 230 с.
- 17. Лурье Ю.Ю. Справочник по аналитической химии. М.: химия, 1989. 448 с.
- 18. Дёрффель К. Статистика в аналитической химии. М.: Мир, 1994. 268 с.
- 19. Будников Г.К., Майстренко В.Н., Вяселев М.Р. Основы современного электрохимического анализа. М.: Мир: Бином ЛЗ, 2003. 592 с.
- 20. Электроаналитические методы. Теория и практика/ под ред. Ф. Шольца. М.: БИНОМ. Лаборатория знаний, 2006. 326 с.