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Abstract. We prove that every serial ring R has the isolation property:

every isolated point in any theory of modules over R is isolated by a

minimal pair. Using this we calculate the Krull–Gabriel dimension of

the module category over serial rings. For instance, we show that this

dimension cannot be equal to 1.

1. Introduction

Let A be a finite dimensional algebra over a field k, and let mod(A) be the

category of finite dimensional A-modules. An object of many investigations

in the representation theory is the category mod(mod(A)) of finitely pre-

sented additive covariant functors from mod(A) to the category of k-vector
spaces. For instance, the Krull–Gabriel dimension of this category, KG(A),

is of special interest (see [14]).

It was noticed in Burke [1] that over a general ring R this notion splits

into two parts: we may consider the Gabriel dimension of R, and its finitely

presented variant, the Krull–Gabriel dimension of R. The choice depends on

whether we factor out arbitrary simple functors or just those simple functors

which are finitely presented in the relevant factor category.

These dimensions may be different, but, by [1, Thm. 5.1], they coexist.

In this paper we consider the Krull–Gabriel dimension, KG, of a serial

ring. In particular we prove that for a serial ring R, KG(R) exists iff the

lattice of right (left) ideals of R has Krull dimension (in the sense of Gabriel

and Rentschler). Moreover, if the Krull dimension of R is equal to α, then

KG(R) does not exceed α ⊕ α, and we show that it is precisely α ⊕ α for

some classes of serial rings. Here α ⊕ α stands for the Cantor’s sum of α

and α.
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We also prove that the Krull–Gabriel dimension of a serial ring can not

be equal to 1. This result seems to be similar to the theorem of Krause [6]

that for any finite dimensional algebra over an algebraically closed field, its

Krull–Gabriel dimension is not equal to 1. Herzog [5] proved that this is

true for any artin algebra.

All the results of this paper are tightly connected with the calculation

of the Cantor–Bendixson rank of the Ziegler spectrum over a serial ring R,

CB(ZgR), made by Reynders [13] and Puninski [10]. In fact we will prove

that the so-called isolation property holds true over any serial ring R: every

isolated point in the Ziegler spectrum of any theory of R-modules is isolated

by a minimal pair.

An immediate consequence of this result is that the following invariants

of a serial ring R are equal: 1) the Krull–Gabriel dimension of R; 2) the

Cantor–Bendixson rank of the Ziegler spectrum over R; 3) the m-dimension

of the lattice of all positive-primitive formulae over R. Having proved this

result, instead of calculating the Krull–Gabriel dimension directly, we use

the arithmetic of positive-primitive formulae over a serial ring developed in

[12].

For instance we prove that if R is a semi-duo serial ring of (finite) Krull

dimension n, then the Krull–Gabriel dimension of R is equal to 2n.

2. Preliminaries

Let mod(R) be the category of finitely presented (right) modules over

a ring R. By F (R) we denote the category of covariant additive functors

from mod(R) to the category of abelian groups, and let mod(modR) be

the full subcategory of F (R) consisting of finitely presented functors. It is

well known that mod(modR) is an abelian category. As in [1] (see also [7])

we define the Krull–Gabriel filtration of mod(modR) as a non-decreasing

sequence of Serre subcategories (the original definition of Geigle [2] uses

contravariant functors).

Take F−1 = {0} and recursively define Fα such that Fα+1 consists of

functors that are of finite length in the quotient category mod(modR)/Fα

(and Fλ = ∪µ<λFµ at limit stages). If at some stage α the localizing category

generated by Fα is equal to F (R), and α is minimal such, we say that the

Krull–Gabriel dimension of R is equal to α.

For more of this, in particular how the Krull–Gabriel dimension is con-

nected with the Gabriel dimension, the reader is referred to [1]. For instance,
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KG(Z) = 2, but the Gabriel dimension of Z is equal to 1. Note that our

terminology is the same as in Krause [7] or Prest [9].

The basic notions of the model theory of modules, including the Ziegler

spectrum, may be found in Prest’s book [8]. For instance, ppM (m) will

denote the pp-type of an element m of a module M , i.e. the set of all

pp-formulae which are satisfied by m in M .

Let φ,ψ be pp-formulae over a ring R. We will use (φ/ψ) to denote,

depending on the context, 1) the interval [φ ∧ ψ,φ] in the lattice of all pp-

formulae over R; 2) the pair of pp-formulae (φ,ψ) (usually with ψ < φ), or

3) the basic open set (φ/ψ) in the Ziegler spectrum ZgR over R.

Let T be a theory of modules over a ring R. A pair of pp-formulae (φ,ψ)

is called minimal, if the interval (φ/ψ) is simple in T . We say that T has

the isolation property, if for any extension T ′ of T , every isolated point in

ZgT ′ is isolated by a minimal pair.

Recall that a module M is called distributive, if the lattice of submodules

ofM is distributive. We say thatM is endo-distributive, ifM is distributive

as a module over its endomorphism ring S = End(M). Similarly we say

that a module M is pp-distributive, if the lattice of pp-definable subgroups

of M is distributive.

A module M is said to be uniserial, if the lattice of submodules of M

is a chain, and M is serial, if M is a direct sum of uniserial modules. For

instance, every uniserial module is distributive.

A ring R (with a unit 1) is serial, if RR is a serial right R-module and RR is

a serial left R-module. Thus R is serial iff there exists a collection e1, . . . , en

of orthogonal idempotents such that 1) 1 = e1 + · · · + en; 2) every right

module eiR is uniserial, and every left module Rei is uniserial. Usually we

consider a serial ring R with a fixed system of orthogonal (indecomposable)

idempotents e1, . . . , en.

If R is a serial ring, then every ‘diagonal’ ring Ri = eiRei is uniserial, and

eiRej is an Ri-Rj-bimodule. Let us define a non-increasing sequence Jac(α)

of two-sided ideals of R. Put Jac(0) = Jac(R), and Jac(α+1) = ∩n Jac
n(α)

at non-limit stages. If λ is limit then set Jac(λ) = ∩µ<λ Jac(µ).

By Müller (see [11, Prop. 1.30]) the Krull dimension of a serial ring R,

Kdim(R), is equal to α iff α is the least ordinal such that the ideal Jac(α)

is a nilpotent. In particular, the right Krull dimension of R is equal to the

left Krull dimension of R.
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3. The isolation property

Theorem 3.1. Let T be a theory of modules, and suppose that every inde-

composable pure-injective module M in ZgT is contained in a basic open set

(φ/ψ), such that the interval (φ/ψ) in the lattice of pp-definable subgroups

of M has width. Then the isolation property holds for T .

Proof. Since the above condition is inherited by extensions of T , it suffices

to prove that every isolated point in ZgT is isolated by a minimal pair.

Let M be an isolated point of ZgT . By hypothesis, M is contained in

a basic open set (φ/ψ) (with ψ < φ), such that the lattice of pp-definable

subgroups of M between ψ(M) and φ(M) has width. Then this lattice

contains a subinterval that is a chain, so we may assume that the interval

[ψ(M), ψ(M)] is a chain from very beginning.

By [16, 4.9] a basis of neighborhoods forM in ZgT can be chosen from the

collection of subpairs of the pair (φ/ψ). Thus we may assume that (φ/ψ)

isolates M in ZgT .

Now we prove that the lattice of pp-formulae in T between ψ and φ is a

chain. Otherwise there are incomparable pp-formulae θ1, θ2 between ψ and

φ in T .

•
φ

��
��

��
�

<<
<<

<<
<

•θ1

<<
<<

<<
< • θ2

��
��

��
�

•
ψ

So both pairs (θ1/θ2) and (θ2/θ1) are nontrivial in T . Since they are

subpairs of (φ/ψ), they both must isolate M . But, by the choice of (φ/ψ),

either θ1(M) ⊆ θ2(M) or θ2(M) ⊆ θ1(M) holds, hence at least one of these

pairs is closed on M , a contradiction.

Thus the lattice of pp-subgroups in T between ψ and φ is a chain. By

[8, Th. 10.2] the pair (φ/ψ) generates on every super-decomposable pure-

injective module in T . From the remark in [8, p. 213] we conclude that M

is isolated by a minimal pair in ZgT . �

Proposition 3.2. Let T be any theory of modules over a serial ring R.

Then the isolation property holds for T .

Proof. Let M be an indecomposable pure-injective R-module. Choose 0 ̸=
m ∈ M , hence mei ̸= 0 for some i. Then M is in the basic open set
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(ei | x/x = 0), where ei | x denotes the pp-formula ‘ei divides x’. But,

by [11, L. 11.4], the lattice of pp-definable subgroups of M below Mei is a

chain.

Thus it remains to apply Theorem 3.1. �

Note that (see [11, Ch. 12]) there is a serial ring with a super-decomposable

pure-injective module. Therefore Proposition 3.2 applies beyond the case

when the continuous part of T is zero.

The theory T is called distributive if the lattice of all pp-formulae of T is

distributive.

The following is a characterization of these theories.

Proposition 3.3. For a theory T (over an any ring) the following are equiv-

alent:

1) T is distributive;

2) every pure-injective model of T is endo-distributive (pp-distributive);

3) every pure-injective indecomposable module in T is endo-uniserial (pp-

uniserial).

Proof. 1) ⇒ 2). Let M be a pure-injective model of T , S = End(M). We

prove that M is a distributive left S-module. By [15, 1.15 (iii)] it suffices

to check the distributivity on cyclic S-submodules Sm, m ∈ M . Since M

is pure-injective, every such submodule is of the form p(M), where p =

ppM (m).

So let m,n, k ∈ M , p = ppM (m), q = ppM (n) and r = ppM (k). It is

enough to check the inclusion

p(M) ∩ (q(M) + r(M)) ⊆ (p(M) ∩ q(M)) + (p(M) ∩ r(M)).

Let l ∈ p(M)∩(q(M)+r(M)), i.e. l ∈ (φ∧(ψ+θ))(M) for any φ ∈ p, ψ ∈ q,

and θ ∈ r. Since T is distributive, it follows that l ∈ ((φ∧ψ)+ (φ∧ θ))(M).

But M is pure-injective. Then [8, Cor. 2.3] yields l ∈ (p(M) ∩ q(M)) +

(p(M) ∩ r(M)).

Since every endo-distributive module has a distributive lattice of pp-

subgroups, M is pp-distributive.

2) ⇒ 1) is clear, because the lattice of pp-formulae of T coincides with

the lattice of pp-subgroups of a ‘large’ pure-injective model of T .

2) ⇒ 3). Let M be a pure-injective indecomposable model of T , S =

End(M). By hypothesis SM is distributive. Since S is a local ring, by

Stephenson (see [15, Th. 2.1]) SM is a uniserial module.
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3) ⇒ 2). Let M be a pure-injective model of T . By [8, Cor. 3.8] M is a

direct summand of a direct product of indecomposable pure-injective models

of T . But by [15, 8.6 (i)] endo-distributivity preserves under direct products

and direct summands. �

Proposition 3.4. The isolation property holds for every distributive theory.

Proof. By Proposition 3.3 and Theorem 3.1. �

The standard example of a distributive theory is the theory of all modules

over a commutative Prüfer ring. Thus we obtain the following.

Corollary 3.5. The isolation property holds for every theory of modules

over a commutative Prüfer ring.

Since we are mainly working with serial rings, let us derive some standard

conclusions only in this case.

Proposition 3.6. Let R be a serial ring. Then the following invariants of

R are equal:

1) the Cantor–Bendixson rank of the Ziegler spectrum of R;

2) the m-dimension of the lattice of all pp-formulae over R;

3) the Krull–Gabriel dimension of R.

Proof. By Proposition 3.2, the isolation property holds for every theory

of modules over a serial ring R. Thus 1) and 2) are equivalent by [8,

Prop. 10.19]. The remaining equivalence is proved in [1, Thm. 4.5]. �

4. m-dimension

If a, b are elements of a lattice L, (a/b) will denote the interval [a ∧ b, b].
Let L be a lattice with 0 ̸= 1. We define a non-decreasing sequence of

congruences ∼α on L. Let ∼−1 be the trivial congruence. If ∼α has already

been defined, put a ∼α+1 b if the interval (a/b) has finite length in the lattice

Lα = L/ ∼α. At a limit stage λ we set ∼λ= ∪µ<λ ∼µ.

The m-dimension of L, mdim(L), is equal to α, if α is the least ordinal

such that Lα consists of one element. For instance, mdim(L) = 0 iff L

is finite, and mdim(L) is not defined iff L contains the ordered set of the

rationals Q as a sublattice.

We say that the interval (a/b) is α-simple, if mdim(a/b) = α and for

every c ∈ (a/b), either mdim(a/c) < α or mdim(c/b) < α holds. Then
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mdim(a/b) = α iff (a/b) can be decomposed into finitely many α-simple

intervals.

Lemma 4.1. Let L be a lattice with 0 ̸= 1 and let a ∈ L. Then the m-

dimension of L is equal to the maximum of the m-dimensions of the intervals

(a/0) and (1/a).

Proof. Let mdim(L) = α, mdim(a/0) = β, and mdim(1/a) = γ.

From (a/0), (1/a) ⊆ L it follows that β, γ ≤ α, hence max(β, γ) ≤ α.

Let us prove that α ≤ max(β, γ). Note that, if L′ is a convex sublattice of

L, then any congruence ∼δ defined on L′ is the restriction of the congruence

∼δ defined on L. In particular this applies to the intervals (a/0) and (1/a).

We may assume that β ≤ γ. From mdim(a/0) = β it follows that 0 ∼β a

in (a, 0), hence a ∼β 0 in L. Then a ∼γ 0 in L, and similarly a ∼γ 1 in L.

Thus 0 = 1 in L/ ∼γ , hence mdim(L) ≤ γ. �

Let L1 and L2 be chains with 0 ̸= 1. By L = L1 ⊗ L2 we will denote the

modular lattice freely generated by L1 and L2 with respect to the relations

01 = 02 and 11 = 12 (i.e. the smallest and the largest elements of L1

and L2 are identified). For instance, if L2 consists of two elements, then

L1 ⊗ L2 = L1.

It is well known (see [4, Thm. 13]) that this lattice is distributive. More-

over it is quite easy to describe the shape of elements of this lattice. Let us

represent elements a ∈ L1 and b ∈ L2 by rectangles (in the plane L1 × L2)

in the following way:

1

+

1

L2 • _________b

• //

OO

0
0 •

�
�
�
�
�

a L1 1
• //

OO

0
0

+

L1 1

Then L is isomorphic to the lattice of subsets of the plane L1 × L2 gen-

erated by these rectangles with respect to usual set theoretic operations ∩
and ∪. For instance the resulting figures for elements a+ b and a∧ b are the
following:
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•b
a+ b

+

+ +

�
�
� ______ •b ________

• //

OO

•
a

• //

OO

•
a

�
�
�

+

a ∧ b

Thus every element of L can be (uniquely) represented as (an ∧ b1) +

(an−1 ∧ b2) + · · · + (a1 ∧ bn), where a1 < a2 < · · · < an ∈ L1 and b1 <

b2 < · · · < bn ∈ L2, i.e. as a descending ladder with just finitely many steps

(some of the steps may be infinite). For instance, if a1 < a2 < a3 ∈ L1 and

b1 < b2 < b3 ∈ L2, then (a3 ∧ b1) + (a2 ∧ b2) + (a1 ∧ b3) looks as follows:

•b3 ____

�

�

•b2 ____

�

�

•b1 ____

�

�

•

OO

//•
a1

•
a2

•
a3

Given a < a′ ∈ L1 and b < b′ ∈ L2, the interval (a′ ∧ b′/a + b) can be

thought as the rectangle P = (a′/a)× (b′/b):

•b′ ________

�
�
�
�

�
�
�
�

•b ________

•

OO

//•
a

P

•
a′

If α, β are ordinals, then α⊕β will denote their Cantor sum. To calculate

this, just represent α = ωα1n1 + · · ·+ωαknk and β = ωα1m1 + · · ·+ωαkmk,

where α1 > α2 > · · · > αk (some of ni,mi may be zero). Then α ⊕ β =

ωα1(n1 +m1) + · · ·+ ωαk(nk +mk). In particular α⊕ β = β ⊕ α.

Proposition 4.2. Let L1 and L2 be chains with 0 ̸= 1, and L = L1 ⊗ L2.

Then mdim(L) = mdim(L1)⊕mdim(L2).

Proof. Let a < a′ ∈ L1, b < b′ ∈ L2, and let P be the rectangle (a′/a)×(b′/b),

i.e. the interval (a′ ∧ b′/a + b) in L. By induction on γ we prove that P

is γ-simple in L iff (a′/a) is α-simple in L1, (b
′/b) is β-simple in L2, and

γ = α⊕ β.

8



As a basis of the induction take γ = 0. If (a′/a) is simple (i.e. 0-simple)

in L1 and (b′/b) is simple in L2 then by the above description P is simple in

L. Suppose that P is simple in L. If (a′/a) is not simple in L1 then there

exists a1 ∈ L1 such that a < a1 < a′. Clearly (a′ ∧ b) + (a1 ∧ b′) is between
a′ ∧ b′ and a′ ∧ b′ ∧ (a+ b) = (a ∧ b′) + (a′ ∧ b), a contradiction.

•b′ ______

�

�

•b ___

�

�

•

OO

//•
a

•
a1

•
a′

Thus we may assume that we have already established the description

of δ-simple rectangles P in L for every δ < γ. Let P = (a′/a) × (b′/b)

be such that mdim(a′/a) = α′, mdim(b′/b) = β′, and α′ ⊕ β′ < γ. Then

P is decomposed into finitely many rectangles whose sides are δ-simple for

certain δ < α⊕ β. By Lemma 4.1 we obtain mdim(P ) = α′ ⊕ β′.

Let us assume that (a′/a) is α-simple in L1, (b
′/b) is β-simple in L2, where

α⊕β = γ. We prove that P is γ = α⊕β-simple (it is not γ′-simple for every

γ′ < α ⊕ β by the induction hypothesis). Otherwise P can be decomposed

as P1 ∪P2 such that both figures P1 and P2 have m-dimension not less than

γ.

The case when P is sectioned only by one horizontal or one vertical line is

clear. Suppose that the board of P1 and P2 is a nontrivial ladder as shown

below. We use an additional induction on the number of steps of this ladder.

•b′

•b1 _________

�
�
�
�
�

•b
•

OO

//•
a

P2

P1

•
a1

•
a′

Suppose that mdim(b′/b1) < β. Then the m-dimension of the rectangle

P ′ = (a′/a)×(b′/b1) is less than γ. Also the interval (b1/b) is β-simple. Thus

we may remove P ′ from P1 and P2 without changing them-dimension. Since

we have decreased the number of steps, the result will follow by induction.

Otherwise mdim(b′/b1) = β. Since the interval (b′/b) is β-simple, it fol-

lows that mdim(b1/b) < β. Suppose that mdim(a′/a1) < α. Then the
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m-dimension of the rectangle (a′/a1) × (b′/b) is less than γ by induction,

hence mdim(P1) is less than γ (since P1 is contained in this rectangle), a

contradiction.

Thus we may assume that mdim(a′/a1) = α. Since (a′/a) is α-simple,

it follows that mdim(a1/a) < α. Then (by induction) both rectangles

(a1/a)×(b′/b) and (a′/a1)×(b1/b) havem-dimension less than γ. Since P2 is

contained in the union of these rectangles, we conclude that mdim(P2) < γ,

a contradiction.

So it remains to prove that there are no other simple rectangles P with

dimension α⊕ β. First suppose that P = (a′/a)× (b′/b), mdim(a′/a) = α′,

mdim(b′/b) = β′ and α′⊕β′ > γ = α⊕β. By symmetry we may assume that

there is γ′ < α′ such that γ′⊕β′ ≥ γ. Since mdim(a′/a) > γ′, this interval is

not γ′-simple. Therefore there exists a1 ∈ (a′/a) such that mdim(a1/a) ≥ γ′

and mdim(a′/a1) ≥ γ′. Let us split P = P1 ∪ P2 in the following way

•b′

�
�
�
�

•b
•

OO

//•
a

P1 P2

•
a1

•
a′

Then, by induction, mdim(P1) ≥ γ and mdim(P2) ≥ γ, hence P is not

γ-simple.

It remains to consider the case when α′ ⊕ β′ = α ⊕ β but one of seg-

ments, say (a′/a) is not α′-simple. Then there is a1 ∈ (a′/a) such that

mdim(a1/a) = mdim(a′/a1) = α′. Decomposing P as above we obtain that

P is not γ-simple.

As the final step we deduce that them-dimension of the rectangle (11/01)×
(12/02) is equal to mdim(L1)⊕mdim(L2). But this rectangle is the interval

(11 ∧ 12/01 + 02) = (1/0) = L. �

By L1 ⊗′ L2 let us denote the modular lattice freely generated by L1 and

L2 (without the identification of 0 and 1).

Corollary 4.3. Let L1, L2 be chains with 0 ̸= 1 and L = L1 ⊗′ L2. Then

mdim(L) = mdim(L1)⊕mdim(L2).

Proof. It is clear that the lattice L1 ⊗ L2 is a factor lattice of L, therefore

mdim(L) ≥ mdim(L1 ⊗ L2) = mdim(L1)⊕mdim(L2).
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For the converse let L′
1 be obtained from L1 by adding a new smallest

element 0−1 and a new largest element 1+1 , and similarly for L2. Since 0 ̸= 1

in L1 and L2 we have mdim(L1) = mdim(L′
1) and mdim(L2) = mdim(L′

2).

If L′ = L′
1 ⊗ L′

2 then mdim(L′) = mdim(L′
1) ⊕ mdim(L′

2) = mdim(L1) ⊕
mdim(L2). But clearly L1 ⊗′ L2 is a sublattice of L′. �

5. Krull–Gabriel dimension

In this section we investigate the Krull–Gabriel dimension of a serial ring.

Recall that the Krull dimension of a lattice L, Kdim(L), is defined as

follows. Kdim(L) = 0 iff L has the descending chain condition, i.e. if L is

artinian. By induction on ordinals we define Kdim(L) ≥ α + 1, if there is

a descending chain a1 > a2 > . . . , ai ∈ L such KG(ai+1/ai) ≥ α for each i.

For a limit ordinal γ we set Kdim(L) ≥ γ if Kdim(L) ≥ β for every β < γ.

Now the Krull dimension of L is the smallest ordinal α such that Kdim(L) ≥
α+ 1 fails.

In general the Krull dimension and the m-dimension of a lattice L may

differ drastically (although they coexist). For example, if L = ωα + 1, then

Kdim(L) = 0 but mdim(L) = α. But for a serial ring they are almost the

same.

Recall that an idempotent e of a ring R is said to be indecomposable, if

the projective right module eR is indecomposable. If R is a serial ring, then

e is indecomposable iff eR is a uniserial module.

Lemma 5.1. Let e be an indecomposable idempotent of a serial ring R.

Then the following invariants are equal:

1) the Krull dimension of the lattice of all submodules of eR;

2) the Krull dimension of the lattice of cyclic submodules of eR;

3) the m-dimension of the lattice of cyclic submodules of eR.

Proof. Let L be the lattice of all submodules of eR, and let L′ be the lattice

of all cyclic submodules of eR. Since L′ is a sublattice of L, Kdim(L′) ≤
Kdim(L).

Let us prove that Kdim(L′) ≥ Kdim(L), hence Kdim(L′) = Kdim(L). If

Kdim(L) ≥ α, then there exists an order inverting embedding f : ωα → L.

If β ∈ ωα, then f(β) ⊃ f(β + 1) yields that rβ ∈ f(β) \ f(β + 1) for some

rβ ∈ R. Thus f(β) ⊇ rβR ⊃ f(β + 1) ⊇ rβ+1R implies rβR ⊃ rβ+1R.

Therefore the map β → rβR defines an order inverting embedding g from

ωα to L′. Thus Kdim(L′) ≥ α.
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Let us extend g to ωα+1 by sending 1 to the zero ideal. Since mdim(ωα+

1) = α we obtain mdim(L′) ≥ α.

It remains to prove that mdim(L′) ≤ Kdim(L). If mdim(L′) does not

exist then there is a countable dense subset in L′, hence Kdim(L) does not

exist. So we may assume that Kdim(eR) is defined.

By [11, Prop. 1.30] Kdim(eR) is the least α such that e Jac(α)n = 0 for

some n. By induction on β ≤ α we prove that every interval (rR/rsR) for

r ∈ eR, s ∈ Jac(β)k has m-dimension not more than β. Decomposing s in

a product we may assume that s ∈ Jac(β) \ Jac(β)2. If mdim(rR/rsR) >

β then there is a principal ideal I ⊆ eR such that rsR ⊂ I ⊂ rR and

mdim(I/rsR) ≥ β, mdim(rR/I) ≥ β. Clearly I = rtR where s = ts′

for some t, s′ ∈ R. Since s /∈ Jac(β)2 by symmetry we may assume that

t /∈ Jac(γ)l for some l and γ < β. Then, by induction, mdim(rR/rtR) ≤ γ,

a contradiction. �

The following lemma gives a neccesary condition for the existence of the

Krull–Gabriel dimension of a serial ring.

Lemma 5.2. Let R be a serial ring. If the Krull–Gabriel dimension of R

exists then the Krull dimension of R is defined.

Proof. Suppose that the (left) Krull dimension of R is undefined. Then for

some i the left module Rei does not have Krull dimension. Therefore by

Lemma 5.1 there exists a dense chain of principal submodules of Rei.

Thus there are rq ∈ Rei, q ∈ Q such that rq ∈ Rrq′ iff q ≥ q′. Let φq,

q ∈ Q be divisibility formulae rq | x. Clearly φq → φq′ iff q ≥ q′, hence

this chain of pp-formulae is dense. Thus the m-dimension of the lattice of

all pp-formulae over R does not exist. By Proposition 3.6 the Krull–Gabriel

dimension of R does not exist. �

So in further considerations we restrict ourselves on the case of serial rings

with Krull dimension.

Now we find an upper bound for Krull–Gabriel dimension of a serial ring.

This result is very similar to considerations in Reynders [13, Cor. 3.27]

concerning Cantor–Bendixson rank (there is a small lapse in that paper

which is originated in the author’s paper [10] — instead of 2α there should

be α⊕ α everywhere).

Proposition 5.3. Let R be a serial ring with Krull dimension α. Then the

Krull–Gabriel dimension over R is less than or equal to α⊕ α.
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Proof. Let L be the lattice of all pp-formulae over R. By Proposition 3.6 it

suffices to prove that mdim(L) ≤ α⊕ α.

By [11, L. 11.1] every interval (e1 | x/x = 0) in L is generated by two

chains: L1 consisting of divisibility formulae a | x, a ∈ Re1, and L2 consist-

ing of annihilator formulae xb = 0, b ∈ e1R. Since L1 is anti-isomorphic to

the lattice of cyclic submodules of Rei, mdim(L1) ≤ α. Also L2 is isomor-

phic to the lattice of cyclic submodules of e1R, which gives mdim(L2) ≤ α.

Then mdim(e1 | x/x = 0) ≤ α ⊕ α by Proposition 4.2. By Lemma 4.1

it remains to prove that mdim(x = x/e1 | x) ≤ α ⊕ α. But this interval is

isomorphic to the interval (e | x/x = 0) where e = e2 + · · · + en, so we can

complete the proof by induction. �

Corollary 5.4. Let R be a serial ring. Then the Krull–Gabriel dimension

of R exists iff the Krull dimension of R is defined.

Proof. By Lemma 5.2 and Proposition 5.3. �

Note that the above-mentioned bound for the Krull–Gabriel dimension of

a serial ring is optimal. For instance (see [10, Cor. 3.6]), if V is a commu-

tative valuation domain of Krull dimension α, then the CB-rank of ZgV is

equal to α⊕ α. Hence the Krull–Gabriel dimension of V is equal to α⊕ α.

Now we obtain a lower bound for the Krull–Gabriel dimension of a serial

ring.

Let e be an indecomposable idempotent of a serial ring R. For a, b ∈ Re

put a ≤l b if b ∈ Ra (i.e. Rb ⊆ Ra), and a <l b if Rb ⊂ Ra. Similarly

for c, d ∈ eR we set c ≤r d if d ∈ cR, and c <r d if dR ⊂ cR. Finally for

e, f ∈ R we write e ≤ f if f ∈ ReR, and e < f if RfR ⊂ ReR. Note that

<l and <r are linear orders whereas < is just a partial order.

Let L be a linear order with 0 ̸= 1, and let e be an indecomposable

idempotent of a serial ring R. We say that the functions f : L → Re,

g : L → eR form a boundary pair, if for every a, b ∈ L, a < b we have

f(a) <l f(b), g(a) <r g(b) and f(a)g(a) < f(b)g(b).

Proposition 5.5. Let R be a serial ring, and let f : L → Re, g : L → eR

be a boundary pair. If the m-dimension of L is equal to α, then the Krull–

Gabriel dimension of R is not less than α⊕ α.

Proof. By Corollary 4.3 (and Proposition 3.6) it suffices to embed L ⊗′ L

into the lattice P of all pp-formulae over R.
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Note that for l, l′ ∈ L we have f(l) | x → f(l′) | x iff l′ ≤ l, and

xg(l) = 0 → xg(l′) = 0 iff l ≤ l′. Thus there are two copies of L inside

P : one is given by divisibility formulae φl(x) = ‘f(l) | x’, and the other is

given by annihilator formulae ψl(x) = ‘xf(l) = 0’. Both these chains have

m-dimension α.

It remains to prove that the lattice of pp-formulae generated by these

two chains is freely generated. Otherwise for some l < l′ ∈ L we have

f(l) | x ∧ xg(l′) = 0 → f(l′) | x + xg(l) = 0. By [12, L. 3.1] it follows that

f(l′)g(l′) ≤ f(l)g(l), a contradiction. �

It is known by Krause [6] and Herzog [5] that there exists no finite di-

mensional algebra A such that the Krull–Gabriel dimension of A is 1. The

corresponding question for Zg(A) = 1 is still open. In the following corollary

we consider this property for serial rings.

Corollary 5.6. Let R be a serial ring. Then each of the following invariants

is not equal to 1: 1) the Krull–Gabriel dimension of R; 2) the Cantor–

Bendixson rank of the Ziegler spectrum of R; 3) the m-dimension of the

lattice of all pp-formulae over R.

Proof. We may assume that R has Krull dimension. If R is artinian then it

has a finite representation type, hence all these dimensions are zero.

So we may assume that R is not artinian. Then (see [11, L. 1.32]) there

exists an indecomposable idempotent e such that the uniserial ring eRe is

not artinian. Thus we may assume that R is a uniserial non-artinian ring

with Krull dimension.

Since R has Krull dimension, there exists p ∈ R such that Jac(R) = pR =

Rp.

By Proposition 5.5 it suffices to construct a boundary pair f, g : ω+1 → R.

Let us define f(n) = g(n) = pn for n ∈ ω and f(1) = 0. If m < n ∈ ω then

clearly f(m) = pm <l p
n = f(n) and similarly for g. Also f(m)g(m) = p2m

and f(n)g(n) = p2n. Clearly the assumption p2m ∈ Rp2nR = p2nR leads to

a contradiction. �

Now it is easy to calculate the Krull–Gabriel dimension for some classes

of serial rings.

Corollary 5.7. Let R be a serial ring of Krull dimension 1. Then the

Krull–Gabriel dimension of R is equal to 2.
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Proof. By Corollary 5.6, the Krull–Gabriel dimension of R is greater than

1. It remains to apply Proposition 5.3. �

According to [11, Ch. 7], every right noetherian (non-artinian) serial ring

R has Krull dimension 1. Thus the Krull–Gabriel dimension of R is equal

to 2. Note that Generalov [3] proved that the right Gabriel dimension of a

right noetherian serial ring is equal to 1.

A serial ring R is called semi-duo, if for every r ∈ eiRej we have either

eiRr ⊆ rR or rRej ⊆ Rr. By [11, Thm. 2.13] a serial ring R is semi-duo iff

every finitely presented indecomposable (left or right) R-module has a local

endomorphism ring.

Proposition 5.8. Let R be a uniserial semi-duo ring of Krull dimension

α. Then the Krull–Gabriel dimension of R is equal to α⊕ α.

Proof. By Proposition 5.3 we obtain KG(R) ≤ α⊕ α.

Let R′ = R/ Jac(α). By [12, Cor. 9.4] R′ is a semi-duo uniserial domain

of Krull dimension α. Then by [13, Cor. 3.27] the Cantor–Bendixson rank

of ZgR′ is equal to α⊕ α. It remains to apply Proposition 3.6. �

For a serial semi-duo ring we have the following weaker form of the pre-

vious proposition.

Corollary 5.9. Let R be a serial semi-duo ring of finite Krull dimension

n. Then the Krull–Gabriel dimension of R is equal to 2n.

Proof. Every ‘diagonal’ ring Ri = eiRei is a uniserial semi-duo ring. More-

over, by [11, L. 1.32], there exists i such that the Krull dimension of Ri is

equal to n. By Proposition 5.8 the Krull–Gabriel dimension of Ri is equal

to 2n. Then KG(R) ≥ 2n.

It remains to apply Proposition 5.3. �

Cornjecture 5.10. Let R be a serial ring of finite Krull dimension. Then

the Krull–Gabriel dimension of R is even.

It is clear from [12] that the structure of the lattice of two-sided ideals

of a serial ring should play a crucial role in calculations of Krull–Gabriel

dimension.

Remark 5.11. Let R be a serial ring. Then the lattice of two-sided ideals

of R is distributive.
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Proof. If I is a two-sided ideal of R, I = ⊕i,j eiIej (as an abelian group).

It remains to note that eiRej is uniserial as a right ejRej-module (or left

eiRei-module). �
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