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Homogeneous isotropic models with two torsion functions built in the framework of the
Poincaré gauge theory of gravity (PGTG) based on general expression of gravitational
Lagrangian without cosmological constant are analyzed. It is shown that the physical
spacetime in the vacuum in the frame of PGTG can have the structure of flat de Sitter
spacetime with torsion. Some physical consequences of obtained conclusion are discussed.
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1. Introduction

Since the creation of the special relativity theory the physical spacetime in the
vacuum (without physical fields) is considered as Minkowski spacetime with the
structure of pseudo-Euclidien continuum. According to the general relativity the-
ory (GR), the physical spacetime in the gravitational field possesses the structure
of pseudo-Riemannien continuum, however, far from gravitating objects and in ab-
sence of gravitational waves the physical spacetime in GR in fact can be considered
as Minkowski spacetime a. In the framework of the Poincaré gauge theory of gravity
1,2,3,4,5,6, which is a natural and in certain sense necessary generalization of Ein-
steinian GR (see Refs. 7–8 and references herein), the physical spacetime in the
gravitational field has the structure of Riemann-Cartan continuum. Usually one
supposes that in the frame of PGTG, similarly to GR, far from gravitating ob-
jects and in absence of gravitational waves the properties of physical spacetime are
practically the same that of Minkowski spacetime. However, as it will be shown in

aHere and later we assume that cosmological constant is equal to zero.
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this paper, the situation in PGTG can be essentially different, and the structure
of physical spacetime in the vacuum can vary from that of Minkowski spacetime
which leads to important physical consequences.

Before we analyze the corresponding situation in the framework of PGTG, it is
necessary to note why this is of direct physical interest for the gravitation theory,
modern cosmology and astrophysics. As it was shown in a number of papers (see
Refs. 9–15 and references herein), the PGTG offers opportunities to solve principal
cosmological problems – the problem of cosmological singularity, the problem of
dark components of the Universe – dark energy and dark matter by describing the
gravitational field in 4-dimensional classical physical space-time. It is because the
PGTG leads to essential changes of gravitational interaction in comparison with
GR and Newton’s theory of gravity by certain physical conditions, in particular at
extreme conditions (extremely high energy densities and pressures) in the begin-
ning of cosmological expansion. These changes are connected with the structure of
physical spacetime in PGTG, namely with spacetime torsion, the presence of which
is a necessary consequence of including the Lorentz group to the gauge group which
corresponds to gravitational interaction.

The present paper is organized in the following way. In Section 2 we present the
main relations for homogeneous isotropic models (HIM) obtained in the framework
of PGTG based on general expression of gravitational Lagrangian. In Section 3 the
structure of spacetime in the vacuum in PGTG is analyzed. In Conclusion some
physical consequences connected with the structure of physical spacetime in the
vacuum are discussed.

2. Homogeneous isotropic models in PGTG

From the physical point of view the spacetime in the vacuum is homogeneous and
isotropic, and in order to investigate the structure of vacuum spacetime in the frame
of PGTG we will analyze the HIM. We will consider the PGTG based on general
expression of gravitational Lagrangian Lg including both a scalar curvature and
various invariants quadratic in gravitational gauge field strengths – the curvature
and torsion tensors (definitions and notations of 14 are used below):

Lg = f0 F + Fαβµν(f1 Fαβµν + f2 Fαµβν + f3 Fµναβ) + Fµν(f4 Fµν

+f5 Fνµ) + f6 F 2 + Sαµν(a1 Sαµν + a2 Sνµα) + a3 Sα
µαSβ

µβ . (1)

The Lagrangian (1) includes the parameter f0 = (16πG)−1 (G is Newton’s grav-
itational constant, the light velocity c = 1) and a number of indefinite parameters:
fi (i = 1, 2, ...6) and ak (k = 1, 2, 3). By using the expression (1) for Lg the system
of gravitational equations for HIM filled by gravitating matter with energy density
ρ and pressure p was obtained in 12 (see also 14). This system contains 4 differential
equations for three geometric characteristics of HIM as functions of time – the scale
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factor of Robertson-Walker metrics R and two torsion functions S1 and S2
b. Gen-

erally the system of gravitational equations for HIM contains 5 following indefinite
parameters:

a = 2a1 + a2 + 3a3, b = a2 − a1, f = f1 +
f2

2
+ f3 + f4 + f5 + 3f6 ,

q1 = f2 − 2f3 + f4 + f5 + 6f6, q2 = 2f1 − f2.

Gravitational equations for HIM allow to obtain cosmological equations generalizing
Friedmann cosmological equations of GR in the following form:

Ḣ + H2 − 2HS1 − 2Ṡ1 = A1, (2)

k

R2
+ (H − 2S1)2 − S2

2 = A2, (3)

where the curvature functions A1 and A2 are determined from gravitational equa-
tions by the following way:

A1 = − 1
12(f0 + a/8)Z

[
ρ + 3p− 2f

3
F 2 + 8q2FS2

2

−12q2

((
HS2 + Ṡ2

)2

+ 4
(

k

R2
− S2

2

)
S2

2

)
− 3a

2

(
Ḣ + H2

) ]
,

A2 =
1

6(f0 + a/8)Z

[
ρ− 6(b + a/8)S2

2 +
f

3
F 2 +

3a

4

(
k

R2
+ H2

)

−6q2

((
HS2 + Ṡ2

)2

+ 4
(

k

R2
− S2

2

)
S2

2

) ]
, (4)

H = Ṙ/R is the Hubble parameter (a dot denotes the differentiation with respect
to time), the scalar curvature F = 6(A1 + A2) is

F =
1

2(f0 + a/8)

[
ρ− 3p− 12(b + a/8)S2

2 +
3a

2

(
k

R2
+ Ḣ + 2H2

) ]
, (5)

and Z = 1 + 1
(f0+a/8)

(
2f
3 F − 4q2S

2
2

)
. Cosmological equations (2)-(3) contain the

torsion functions S1 and S2 with their first derivatives. From gravitational equations
for HIM the torsion function S1 is determined as

S1 = − 1
6(f0 + a/8)Z

[
fḞ + 6(2f − q1 + 2q2)HS2

2 + 6(2f − q1)S2Ṡ2

]
, (6)

and the torsion function S2 satisfies the differential equation of the second order:

q2

[
S̈2 + 3HṠ2 +

(
3Ḣ − 4Ṡ1 + 4S1(3H − 4S1)

)
S2

]

−
[
q1 + q2

3
F + (f0 − b)− 2(q1 + q2 − 2f)A2

]
S2 = 0. (7)

bAt the first time equations for HIM with two torsion functions were deduced in Ref. 16. These
equations were considered in 17 with the purpose to obtain their solutions; however, so called
”modified double duality ansatz” used in 17 by obtaining solutions with not vanishing torsion
function S2 is not applicable in this case even for the vacuum (see below) and its application leads
generally speaking to incorrect solutions.
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By given equation of state for gravitating matter cosmological equations (2)-(3)
together with equations (6)-(7) for torsion functions describe the evolution of the
most general HIM in PGTG. So far, we have not used any restrictions on indefinite
parameters of Lg. From formulas (5)-(6) for scalar curvature F and torsion function
S1 we see that cosmological equations (2)-(3) do not contain higher derivatives
of the scale factor R only if a = 0. Isotropic cosmology with a 6= 0 possesses
some principal problems; in particular cosmological equations at physically available
initial conditions lead in this case to not physical solutions24. With the purpose to
exclude higher derivatives of R from cosmological equations the restriction a = 0
is used in our works. Because of mathematical reasons this restriction will be not
used by further general mathematical analysis.

3. Spacetime of gravitating vacuum in PGTG

Apart the spacial homogeneity and isotropy, in order to investigate the gravitating
vacuum in PGTG we have to take into account also its homogeneity in time. In the
frame of GR these conditions in accordance with Friedmann cosmological equations
(in absence of gravitating matter (ρ = 0) and vanishing cosmological constant)
are fulfilled only in the case of flat HIM (k = 0) with zeroth curvature that leads
to Minkowski spacetime c. However, in the frame of PGTG there is also another
solution, which can be obtained if we suppose that in relations (2)-(7) for HIM the
time derivatives vanish and ρ = 0. Then from (5) and (6) we obtain the following
expressions for scalar curvature F and torsion function S1 in the vacuum (k = 0):

F =
6

f0 + a/8

[
−(b + a/8)S2

2 +
a

4
H2

]
,

S1 = −2f − q1 + 2q2

(f0 + a/8)Z
HS2

2 , (8)

and the curvature functions (4) in the vacuum take the following form:

A1 =
1

6(f0 + a/8)Z

[
f

3
F 2 − 4q2FS2

2 + 6q2

(
H2 − 4S2

2

)
S2

2 +
3a

4
H2

]
,

A2 =
1

6(f0 + a/8)Z

[
−6(b + a/8)S2

2 +
f

3
F 2 +

3a

4
H2 − 6q2

(
H2 − 4S2

2

)
S2

2

]
. (9)

Then cosmological equations (2)-(3) in the vacuum take the following form:

H2
[
1 +

2(2f − q1 + 2q2)
(f0 + a/8)Z

S2
2

]
= A1,

H2
[
1 +

2(2f − q1 + 2q2)
(f0 + a/8)Z

S2
2

]2 − S2
2 = A2. (10)

cSuch model filled with the dust (p = 0) was considered in 18 as preferable model of the real
universe.
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Because the Bianchi identity for HIM 12 leads in this particular case to the following
relation: H(A2−A1) + 2S1A1 + HS2

2 = 0, only one out of eqs. (10) is independent.
Eq. (7) for S2-function in the vacuum is transformed to:

S2[4q2S1(3H − 4S1)− q1 + q2

3
F + 2(q1 + q2 − 2f)A2 − (f0 − b)] = 0, (11)

where the curvature functions and S1-function are determined by (8)-(9). Eqs. (10)-
(11) determine the values of H and S2 for gravitating vacuum. In accordance with
(11) there are two types of solutions: with vanishing and not vanishing value of S2.
If S2 = 0, then we have S1 = 0 and according to cosmological equations in this case
H = 0. Such solution corresponds to Minkowski spacetime in the vacuum. For the
second solution with not vanishing value of S2 we have:

4q2S1(3H − 4S1)− q1 + q2

3
F + 2(q1 + q2 − 2f)A2 − (f0 − b) = 0. (12)

Eqs. (10) and (12) allow to determine the values of S2
2 and H2 for the vacuum as

functions of available indefinite parameters in gravitational equations for HIM. This
solution corresponds to 4-dimensional flat de Sitter spacetime with not vanishing
torsion i.e. to the Riemann-Cartan continuum with constant curvature and torsion.
It should be noted that the torsion in discussed vacuum solutions is connected with
pseudoscalar torsion function S2, and these solutions differ essentially from that
obtained in the case of HIM with the only torsion function S1

19. According to 19

in this case the vacuum solution with de Sitter metrics and not vanishing torsion is
possible only if a 6= 0 d. As it is follows from our consideration, the regular character
of the vacuum solutions obtained in this paper does not depend on restrictions
on parameter a. In contrast to these vacuum solutions the vacuum solution in 19

is specific solution. In the frame of isotropic cosmology without higher derivatives
(a = 0) based on gravitational Lagrangian (1) (see Refs. 7–15 and references herein)
similar vacuum solutions do not appear. Because we have two possibilities for the
vacuum – Minkowski spacetime and de Sitter spacetime with torsion, the following
question appears: which of these possibilities is realized in nature (by assuming that
the PGTG is correct gravitation theory). The answer to this question depends on the
behaviour of cosmological solutions for HIM at asymptotics, when energy density
of gravitating matter tends to zero. Mathematically the answer to the formulated
question depends on restrictions on indefinite parameters in gravitational equations
for HIM.

Now we will obtain the vacuum solution at some physically acceptable restric-
tions on indefinite parameters. In the frame of isotropic cosmology without higher
derivatives, the absence of which is ensured by condition a = 0, equations for HIM
include in general case four indefinite parameters (see for example 13): α = f

3f2
0

with
inverse dimension of energy density (f > 0), b with the same dimension as f0 and

dSuch solution coincides with that obtained in 20 in the case f0 = 0.
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two dimensionless parameters: ε = q2
f and ω = q1+q2−2f

f
e. By some restrictions on

indefinite parameters the cosmological equations take at asymptpotics the form of
Friedmann cosmological equations of GR with effective cosmological constant in-
duced by spacetime torsion and allow to explain the acceleration of cosmological ex-
pansion at present epoch without using notions of dark energy and also dark matter
(at least partially) 13. The behaviour of cosmological solutions depends essentially
on restrictions on parameters ε and ω. The most simple from mathematical point of
view and physically acceptable case corresponds to the following choice: ε = 0 and
ω 6= 0. In this case the equations (12) and (10) lead to the following vacuum solu-

tions for S2
2 and H2: S2

2 =
[
1− b

2f0
[1±

(
1− ω(1− b/f0)

f2
0

b2

)1/2

]
]

[12αb(1+ω/4)]−1;

H2 = 6b2

f0
αS4

2 [1− 6α(2b + ωf0)S2
2 ]−1. The answer to the question ”Which of these

solutions corresponds to the true vacuum?” depends on additional restrictions on
indefinite parameters and also on properties of equation of state of gravitating mat-
ter at the beginning of cosmological expansion, by which the cosmological equations
lead to regular cosmological solutions with corresponding asymptotics.

4. Conclusion

In the framework of the standard gravitation theory (GR) de Sitter spacetime ap-
pears as a result of introducing of cosmological constant, which corresponds to
some gravitating object with negative pressure, into Einstein gravitation equations
f . By usual interpretation, the cosmological constant is associated with the vac-
uum of quantized matter fields. It should be noted that in the frame of quantum
field theory the vacuum energy density of quantized fields diverges, and it can be
eliminated by means of regularizing procedure. At the same time the value of cos-
mological constant in standard ΛCDM -model corresponds to very small energy
density comparable with average energy density in the Universe at present epoch.

As it was shown in this paper, in the framework of PGTG de Sitter spacetime
appears as a result of exact solution of gravitational equations for HIM with two
torsion functions without cosmological constant. If the spacetime in the vacuum
has the structure of de Sitter spacetime with torsion, then in the framework of
classical field theory the conception of the vacuum as physical notion is changed
essentially. Instead of vacuum as passive receptacle of physical objects and pro-
cesses, the vacuum assumes a dynamical properties as a gravitating object. That
leads to principal differences of gravitational interaction in comparison with other
fundamental physical interactions, which are connected with certain matter prop-
erties and manifestation of which disappears without physical matter. In contrast
to this, the vacuum possesses important characteristics of gravitating objects – the
curvature and torsion.

eThe parameter ω was supposed to be equal to zero in 12,13,14.
f In the framework of PGTG de Sitter spacetime induced by cosmological constant was considered
in 19.
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If the spacetime of the vacuum is de Sitter spacetime with torsion, the acceler-
ation of cosmological expansion at present epoch explained in the frame of PGTG
in 12,15 acquires the vacuum origin. As it was noted in 13, the search for the crite-
ria that allow us to be able to choose physically acceptable solutions is important
for PGTG. According to 5 any vacuum solution of Einstein gravitation equations
of GR (in particular, the Schwarzschild vacuum solution) with vanishing torsion
is an exact solution of PGTG independently on values of indefinite parameters of
gravitational Lagrangian (1). If the physical spacetime in the vacuum possesses the
torsion, such solutions are not physically acceptable, and the search of correspond-
ing physically acceptable solutions becomes well warranted. Because in the frame of
PGTG Newton’s law of gravitational interaction can be not applicable at cosmolog-
ical and possibly astrophysical scales, approximative analysis of solutions of PGTG,
in the frame of which Newton’s law is used in the lowest approximation, has to be
re-examined. It should be noted that the analysis of the particle content of PGTG
based on general expression of gravitational Lagrangian in 5,21,22,23 is given in tor-
sionless backgrounds – Minkowski spacetime and Einstein manifolds. If the physical
vacuum has the structure of de Sitter spacetime with torsion, the investigation of
the particle content of PGTG in such background is of certain interest.

We see that the Poincaré gauge theory of gravity leads to principal consequences
concerning the classical notion of physical vacuum. By certain restrictions on indef-
inite parameters of gravitational Lagrangian (1), unlike some other generalizations
of Einsteinian gravitation theory (see for example 25,26) PGTG is free of such patho-
logical objects as ghosts and tachyons, and cosmological solutions for accelerating
Universe are asymptotically stable.
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