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Abstract: Currently there are two general ways to solve stiff differential equations nu-

merically. The first approach is based on implicit methods and the second uses explicit

stabilized Runge–Kutta methods, also known as Chebyshev methods. Implicit methods

are great for very stiff problems of not very large dimension, while stabilized explicit meth-

ods are efficient for very big systems of not very large stiffness and real spectrum. In this

paper we describe methods which are explicit and are capable of solving stiff systems with

complex eigenvalues of Jacobi matrix.

c© 2010 European Society of Computational Methods in Sciences and Engineering

Keywords: Stiff problems, explicit methods, collocation methods, iterated Runge-Kutta

methods, linear analysis of convergence.

Mathematics Subject Classification: 65L05, 65L06, 65L20

Introduction

Consider an ordinary differential equation (ODE) system

y′(x) = f(x, y(x)), y(x0) = y0, x ∈ [x0, x0 + h], y : R → R
n, (1)

and an s-stage implicit Runge–Kutta (IRK) method given by Butcher matrix A =
(
aij

)s

i,j=1
and

vectors b = (b1, . . . , bs), c = (c1, . . . , cs). This method we’ll be referred to as the base method. By
applying it to problem (1) one obtains an approximate solution

y1 = y0 + h

s∑

i=1

biki ≈ y(x0 + h),

where the unknown terms ki, known as “stage derivatives”, satisfy a system of algebraic equations
which we write in the form

k = f(k), (2)
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k = (k1, . . . , ks)
T ∈ R

ns, f(k) = (f1(k), . . . , fs(k))T , fi(k) = f(x0 + cih, y0 + h
∑s

j=1 aij kj). An
instructive description of standard approach to this system resolving, based on simplified Newton
iteration, is given in [6, IV.8]. References to more recent works on further development of this
approach can be found in [4]. All these methods exploit different types of Jacobi matrix ∂f

∂y
(y0)

factorization, which is expensive in case of very large n. The way of solving (2) we are going to
suggest is a fixed-point-like iteration, resulting in an explicit algorithm which requires only eval-
uations of f . Initially our approach development was not connected with Runge–Kutta methods,
the interested reader can find details in [3].

This paper is organized as follows. The first section is devoted to the theoretical issues: we
begin with the derivation of the general form of our method, then perform the analysis of its linear
convergence properties. Next follows the comparison of the method we call Euler-Picard iteration
with the conventional Picard iteration. Finally the properties of general multistage processes
are discussed. The second section contains some reasoning about practical implementation and
displays the results of some simple numerical experiments to demonstrate the potentiality of our
approach.

1 Generalized Picard iteration

Instead of solving (2) directly we introduce a fictitious variable t and, according to the principle
of steadying [2], construct a differential equation such that its steady-state solution coincides with
the solution of (2). This differential equation is

k′(t) = −k(t) + f(k(t)) (3)

and we shall call it the embedding equation. The next step is to select an initial approximation
k(0) and trace for the sought steady state of (3) by means of some explicit σ-stage RK method
(auxiliary method) with fictitious time step τ . This results in an iterative process of the following
general form:

k(l+1) = Φ
(
k(l)

)
, l = 0, 1, . . . , N − 1, (4a)

Φ(k) = k + τ

σ∑

p=1

βp

(
f(gp(k)) − gp(k)

)
, gp(k) = k + τ

p−1∑

q=1

αpq

(
f(gq(k)) − gq(k)

)
. (4b)

Here αpq and βp are the coefficients of the auxiliary method. If explicit Euler method is used in
(4) we obtain

k(l+1) = (1 − τ)k(l) + τ f
(
k(l)

)
, (5)

which for τ = 1 gives the conventional Picard iteration

k(l+1) = f
(
k(l)

)
, (6)

or iterated Runge-Kutta method [5]. That’s why we call (5) the Euler-Picard iteration (EPI) and
(4) the generalized Picard iteration (GPI). Let us give a short summary of inherent GPI features:
– the resulting method is explicit (no matrix factorizations involved);
– the cost is (σs) evaluations of f per iteration;
– the cost can be reduced to Nf = σ per iteration if s parallel processors are available.
The justification of the proposed scheme we are going to perform is based on the linear convergence
analysis (see [4] and related references).
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1.1 Linear convergence analysis

Consider linear test problem

y′(x) = λy(x), y(0) = 1, λ ∈ C. (7)

The embedding equation (3) for this problem is

k′(t) = (zA − I)k(t) + λe, (8)

where z = λh, A, as before, is Butcher matrix of the base method, e = (1, . . . , 1)T . Denote by
{µj}

s
j=1 the eigenvalues of A. Consider matrix

Λ(z) = zA − I (9)

and its spectrum {νj(z) = zµj − 1}. These eigenvalues play important role in linear convergence
analysis of GPI (4), and before we proceed it is important to understand that everything we are
going to discover for the scalar linear model (7) holds for arbitrary linear ODE system

y′(x) = Jy(x), y(0) = y0, y : R → R
n, (7′)

as well. This is due to the fact that for (7′) the embedding equation is

k′(t) = (hA ⊗ J − I)k + e ⊗ Jy0,

with eigenvalues of Λ = hA ⊗ J − I being exactly equal to νij = hλiµj − 1, according to the
property of Kronecker product (here {λi}

n
i=1 is the spectrum of J).

Asymptotic stability analysis. Suppose that the matrix Λ(z) (9) is nonsingular, then the sought
steady-state solution of (8) is k∗ ≡ −Λ(z)−1λe. For our purposes it is helpful to know whether this
solution is asymptotically stable. Thus consider a region D ⊂ C such that for all z ∈ D asymptotic
stability criterion holds. More precisely, we introduce

Definition 1. We shall call the the region D ⊂ C defined by

D =
s⋂

j=1

Dj , Dj = {z ∈ C : Re(zµj − 1) < 0} , (10)

the asymptotic stability region (of linear embedding equation) for given implicit RK method with
Butcher matrix A.

Proposition 1. Let A be an s × s real matrix such that all its eigenvalues {µj} have positive
real parts. Then

D ⊃ D̃ =
{
z ∈ C : |arg(x0 − z)| < α

}
, (11)

where x0 = (maxj Re µj)
−1, α = π/2 − |maxj arg µj |, D is asymptotic stability region (10) of RK

method corresponding to A.
The proof of this proposition is based on straightforward investigation of the geometric shape

of the region (see figure 1).
Hereafter we restrict ourselves to the well-known class of collocation RK methods, namely Gauss

(of order 2s), Radau IIA (of order 2s − 1) and Lobatto IIIA (of order 2s − 2) methods. All these
methods are A-stable so their matrices do satisfy the conditions of proposition 1. Corresponding
values of α and x0 are given in table 1. It is interesting that these parameters for Gauss and
Lobatto IIIA methods of same order are identical. Note also that for fixed s Lobatto methods have
widest D, which is due to the presence of zero eigenvalue.

c© 2010 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Figure 1: Asymptotic stability regions (gray) and boundaries of their approximations D̃ for
Radau IIA methods.

s 2 3 4 5 6 7
α x0 α x0 α x0 α x0 α x0 α x0

Gauss 60◦ 4 46.3◦ 4.6 38.4◦ 6.3 33.1◦ 7.3 29.2◦ 8.9 26.4◦ 9.9
Radau 54.7◦ 3 41.3◦ 3.6 33.9◦ 5.3 29.2◦ 6.3 25.8◦ 7.8 23.3◦ 8.9
Lobatto 90◦ 2 60◦ 4 46.3◦ 4.6 38.4◦ 6.3 33.1◦ 7.3 29.2◦ 8.9

Table 1: Parameters of asymptotic stability regions for collocation RK methods.

Linear convergence criterion. Application of some GPI (4) to the problem (7) gives an iterative
process of the form

k(l+1) = R
(
τΛ(z)

)
k(l) + P

(
τΛ(z)

)
λe, (12)

where R is the stability polynomial of the auxiliary method, P is another polynomial depending
on this method as well. The following trivial yet important statement in fact is a citation of the
well-known result from numerical linear algebra.

Proposition 2. Linear GPI (12) converges iff the spectral radius of R
(
τΛ(z)

)
is less than 1,

or equivalently iff all eigenvalues of τΛ(z) lie in the stability region of auxiliary RK method, i.e.

∣∣R(τ(zµj − 1))
∣∣ < 1 ∀j = 1, . . . , s.

Remark. The global convergence rate (see, e.g., [8, pp. 105-106]) is

r(z, τ) = max
j

|R(τ(zµj − 1))|. (13)

This proposition is the key to the following questions:

(Q1) What auxiliary method should be chosen in (12) in order to achieve fastest convergence?

(Q2) What value of τ should be taken for this purpose?

(Q3) When it is possible to achieve convergence of a GPI with given auxiliary method by means
of changing τ?

c© 2010 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Figure 2: Examples of subsets Ω (14) for Radau IIA methods with s=3 and s=6.

Before answering these questions let’s make the reasoning more concrete. Consider a class of
linear problems (7) such that z ∈ Z ⊂ C (this generalizes the case of linear ODE system (7′)
with hλi ∈ Z, i = 1, . . . , n). By Ω denote the subset of complex plane where the eigenvalues of
corresponding matrices Λ(z) (9) are located:

Ω =

s⋃

j=1

(µjZ − 1). (14)

The examples of subsets Ω corresponding to Z = (−50, 0) and Z = (−50, 0) + i(−25, 25) for
Radau IIA methods are given in figure 2. Finally, let S be the stability region of auxiliary RK
method: S = {q ∈ C : |R(q)| < 1}. The answers to the above questions are the following.

(A1) An optimal auxiliary method for given class of problems should have a stability polynomial
R such that |R(q)| is minimal possible over q ∈ τΩ.

(A2) The value of τ should be small enough to satisfy τΩ ⊂ S but large enough to have
|R(q)| → min for all q ∈ τΩ, since minq∈τΩ |R(q)| → 1 as τ → 0.

(A3) For a given auxiliary method it is possible to achieve convergence of corresponding GPI by
means of changing τ only when S and Ω have compatible shapes, i. e. if ∃ τ > 0 such that
τΩ ⊂ S.

1.2 Euler-Picard iteration versus conventional one

The above results allow us to easily compare EPI method (5) with traditional Picard iteration (6).
Recall that both methods are representatives of GPI family (4) and use explicit Euler method as
auxiliary one. The difference is that Picard iteration uses fixed fictitious time step size τ = 1. Due
to the item (A2) of the above list, this results in severe limitations on the size of region Ω (14):

Ω ⊂ SEuler = {q ∈ C : |1 + q| < 1}, (15)

and consequently on the step size h. That’s why conventional Picard iteration is not appropriate
for stiff problems.

c© 2010 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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On the other hand, Euler-Picard iteration (5) has freedom of choice for the parameter τ , thus
admitting much larger values of h. More precisely this is expressed in the following statement and
the corollary.

Proposition 3. Consider Euler-Picard iterative process (5) for the linear ODE system (7′):

k(l+1) = (1 − τ)k(l) + τ(hA ⊗ J)k(l) + τe ⊗ Jy0. (16)

Let D be the asymptotic stability region (10) corresponding to the Butcher matrix A. Suppose
that spectrum Z of matrix hJ satisfy Z ⊂ D, i = 1, . . . , n. Then there exists τ0 > 0 such that (16)
converges for all positive τ < τ0.

Proof. From Z ⊂ D it follows that Ω ⊂ C− (see the definitions of D (10) and Ω (14)). Since Ω
is bounded it is always possible to select τ0 > 0 such that subset τΩ fits in circle (15). This implies
convergence of (16) due to proposition 2. �

Corollary. Let all eigenvalues of matrix J satisfy |arg(−λi)| < α, where α is the parameter
of asymptotic stability region as defined in proposition 1 (see also table 1). Then for any h > 0
there exists τ0 > 0 such that (16) converges for all positive τ < τ0.

1.3 Multistage auxiliary methods

As we can see from above, EPI (5) in fact has quite decent properties of convergence on stiff
problems. The natural question now is

(Q4) Is there any advantage of using multistage auxiliary methods in GPI (4), when compared to
simple σ iterations of EPI (5)?

To answer this question in terms of linear convergence analysis we’re going to find weak points
of EPI and then try to patch them up by using multistage methods. By d(τΩ, ∂S) denote the
distance between τΩ and the boundary of S:

d(τΩ, ∂S) = inf
ω∈Ω,q∈∂S

|τω − q|. (17)

According to (13), the convergence speed of any GPI can be arbitrary small as d(τΩ, ∂S) → 0. In
case of EPI we have S = SEuler (15), so the troubles begin when, in particular,

i) ∃ω ∈ Ω such that arg ω ≈ π/2, |ω| ≫ 1, and

ii) ∃ω1, ω2 ∈ Ω such that |ω1|/|ω2| ≫ 1.
In both cases we have to take very small values of τ to fit τΩ into SEuler and also inevitably have
d(τΩ, ∂SEuler) ≪ 1. And of course no convergence of EPI can be expected if

iii) Ω 6⊂ C−.
Now we shall show that in all these three cases it is possible to take advantage of using some special
auxiliary methods in (4).

Contour-optimized stability polynomials The basic idea is to construct special stability polyno-
mials in order to minimize the value of |R(q)| over some region of the complex plane. Since we
have freedom of selecting the value of τ we are concerned not about the area of stability domain,
but rather about its shape. Another important aspect is that we are not restricted by the order
conditions, like in the case of traditional Chebyshev RK methods, and require the auxiliary method
to be only of order zero. Thus we are constructing polynomials of the form

Rσ(q) = 1 +

σ∑

j=1

ajq
j , (18)

c© 2010 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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such that

F (a1, . . . , aσ) =

∮

C

|Rσ(q)|2dq → min, (19)

where C is a closed contour bounding the region of interest. There are several ways of resolving
quadratic programming problem (19). In this work we used the straightforward one: after repre-
senting Rσ in the trigonometric form we have that the unknown vector a = (a1, . . . , aσ)T is the
solution to the linear system

Qa = p, (20)

where Q =
(∮

C
ρi+j cos((i− j)ϕ) dq

)σ

i,j=1
, p =

(∮
C

ρi cos iϕ dq
)σ

i=1
. The drawback is that condition

number of the matrix Q increases quickly with growth of σ. Another, perhaps more stable approach,
can be based on the construction of orthogonal polynomial system with respect to the scalar
product (u, v) =

∮
C

u(q)v(q)dq.
After resolving (19) we construct corresponding auxiliary explicit RK method by means of

simple composition of one- and two-stage methods as described in [7]. It is clear that the choice of C
crucially influences the properties of iterative process (4) and ideally should depend on problem (1).
The general strategy we suggest is to take the boundary of a unit circle segment:

C = C(θ) = {ρ ei(π−θ)}ρ∈[0,1] ∪ {ei(π+ϕ)}ϕ∈[−θ,θ] ∪ {ρ ei(π+θ)}ρ∈[0,1]. (21)

Figure 3 displays the portraits of obtained stability regions and plots of |Rσ(z)| along z ∈ C(θ),
for the cases of σ = 5 and σ = 20, θ = π

3 , π
2 , 2π

3 and 5π
6 . Comparing these regions with figure 2

we see that the optimized stability polynomials for smaller angles θ are appropriate for the case
of real spectrum of Jacobi matrix. The increasing of θ results in slower general convergence rate
but admits convergence for wider range of complex eigenvalues. Note also that for θ > π

2 we
don’t get |Rσ(q)| < 1 ∀q ∈ C(θ), so the approach we use may not be optimal. Nevertheless the
constructed stability polynomials possess more attractive properties than Rσ(q) = (1+ q)σ (which
is the stability polynomial of σ Euler-Picard iterations (5)).

Let’s recall the items i) – iii) from above, where we described the difficult cases for the EPI.
Comparing the stability regions from figure 3 with (15) we see that generalized Picard iterations
with the constructed auxiliary methods for θ = π

2 will perform much better in the case i), since
their stability regions cover the segment [−i, i] of imaginary axis. Another important fact is that
the optimized stability polynomials for θ > π

2 admit convergence in the case iii) (see figures 2
(right) and 3)3.

As for the item ii), which is the case of very small and very large eigenvalues of Jacobi matrix,
this problem is an intrinsic one for all GPI family. It is due to the fact that the general requirement
of minimizing the module of stability polynomial falls into contradiction with the natural restriction
Rσ(0) = 1. The only thing we can do in this situation is to construct stability polynomials with
fastest possible decay near the zero, i. e. with maximum slope R′

σ(0). For σ iterations of EPI we

have d
dq

(1 + q)σ
∣∣∣
q=0

= σ. On the other hand, the C(π/3)-optimized stability polynomial R20 has

R′

20(0) = 23.0246. Moreover, it is possible to achieve greater values of the slope using some fixed
value for a1 in (18). So, the answer to the question 4 from above is

(A4) Appropriately constructed multistage auxiliary methods generally have better linear con-
vergence properties than one-stage Euler-Picard iteration.

In terms of contour-optimized stability polynomials which we considered, “appropriately con-
structed” means that the choice of θ should depend on the distribution of Jacobi matrix eigenvalues.
Ideally the solver code should analyze the problem and select θ and τ adaptively on each step.

3On the one hand, this looks unnatural because in this case the corresponding embedding equation (8) does not
have asymptotic stability property. On the other, we are interested in the convergence of (12) rather than in the
approximation of embedding equation solution.
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Figure 3: Stability regions of C(θ)-optimized auxiliary methods, θ = π
3 , π

2 , 2π
3 and 5π

6 , s=5 (upper)
and s=20.

Currently such an algorithm is one of the subjects for further research. On the other hand, as it is
seen from figure 3, θ = π

2 is a good universal choice for rather wide class of stiff problems, namely
the problems with eigenvalues lying in the corresponding asymptotic stability region of the base
RK method (recall definition 1 and figure 1).

2 Numerical examples

Extrapolated initial approximation A very important moment for the implementation of GPI (4)
is the sane choice of initial approximations k(0). Since the base methods we choose are collocation
ones it is reasonable to exploit the approach which is used in classic codes like RADAU5 [6]. The
idea is simple. Collocation methods for problem (1) provide a continuous polynomial approximation
u ≈ y defined as

u(x) = y0 + h

s∑

i=1

ki

∫ x−x0

h

0

ϕi (ξ) dξ, (22)

where ϕi are Lagrange basis functions, ϕi(cj) = δij . On the intervals where the solution changes
slowly the collocation polynomial (22) can give a good approximation not only for x ∈ [x0, x0 + h]
but for x > x0 + h as well. Thus if u(N) is a final approximation to u (22) on the current step of

c© 2010 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Figure 4: Work-precision diagram for Robertson problem.

length h, then on the next step of length ĥ we need an initial collocation polynomial û(0), defined

by coefficients k̂
(0)
i , such that û(0)(x) = u(N)(x) ∀x. This results in

k̂
(0)
i =

s∑

j=1

k
(N)
j ϕj(1 + δci), i = 1, . . . , s, (23)

where k
(N)
j are the coefficients corresponding to u(N), δ = ĥ/h.

This technique significantly improves the convergence of generalized Picard iterations and is
effectively used in the following numerical experiments.

2.1 Robertson problem

Our experimental code is written in Mathematica language and does not implement automatic
step size and error control yet. The demonstration of the GPI methods potentiality begin with the
well-known Robertson problem (see, e. g., [6, p. 11]). To skip the boundary layer we take initial
condition y0 = ỹ(50000) = (0.03245985, 1.341396 × 10−7, 0.96754001)T , where ỹ is the solution of
Robertson problem computed by RADAU5 code with ỹ(0) = (1, 0, 0)T , atol = rtol = 10−15. The
interval of integration is [0, 1000]. The mesh is fixed and imitates “stepsize acceleration”: h1 = 0.1,
hi = min(1.25hi−1, 1.75), i = 2, . . . , 580, h581 = 0.874042 (to get the endpoint equal exactly to
1000).

The stopping criterion in (4) is based on the defect control:

||f(k(l)) − k(l)|| 6
C0

h
× tol, (24)

where C0 = 0.3, tol is an accuracy controlling parameter. The presence of h−1 is due to the idea
that large step sizes require more accurate approximations. The fictitious time step τ should also
depend on h and, surely, on the spectral radius of the Jacobi matrix J at y0, which is equal to
ρ = 9683.49 in our case. The general formula for τ is

τ =
0.9

h ρµ0 + 1
, (25)
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where 0.9 is an “insurance factor”, µ0 = maxj |Re µj |, {µj} is, as before, spectrum of Butcher
matrix. Since all eigenvalues of J are real we use C(π/3)-optimized auxiliary methods with σ = 1,
10 and 20. For σ = 1 we clearly have slightly tuned Euler-Picard iteration (5). The base method
is celebrated Radau IIA method of order 5, s = 3.

For comparison we used ROCK4 solver implementing 4th order Chebyshev methods [1] with

supplied value of spectral radius equal to 9700. For GPI methods tolerances toli = 10−5− 1

2
i,

i = 1, . . . , 20, were used, and the fixed grid described above. For ROCK4 we took atoli = rtoli =
10−

1

2
i, i = 1, . . . , 29. As an exact solution we used the one obtained by RADAU5 solver with

rtol = atol = 10−15. Euclidean norms of absolute errors at the endpoint and total numbers of f
evaluations Nf are gathered in the diagram (figure 4).

It is necessary to emphasize that these results for GPI methods were obtained in a straight-
forward way and we expect significant improvement in the presence of step size end error control
mechanisms. Nevertheless we see that for medium tolerances our methods perform significantly
better than Chebyshev method, while for small tolerances the difference is not so big. It is also
interesting that for big tolerances methods with smaller σ are more effective while small tolerances
give advantage to the process with greater number of stages. On the other hand all the considered
GPIs performed approximately in the same manner, so it is hard to give general recommendations
for choosing σ as yet.

2.2 Linear system with complex spectrum

Chebyshev methods are constructed to have extended stability domain along the negative real axis,
so it is natural to expect problems with ROCK4 in the case of complex eigenvalues presence. Thus
we continue numerical experiment with the simple linear problem

y′(x) =

(
−1000 1000
−1000 −1000

)
y(x) +

(
100

−200

)
, y(0) =

(
−100

200

)
. (26)

The spectrum of the system matrix is λ1,2 = −1000±1000 i. The interval of integration is [0, 1000],
so it includes the boundary layer. The mesh for GPI methods is fixed, as before: h1 = 0.001,
hi = min(1.5hi−1, 10), i = 2, . . . , 120, h121 = 7.55652. The eigenvalues λ1,2 lie near the border of
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asymptotic stability region (10) of the base Radau IIA method (recall figure 1 (left) and table 1), so
it is useless to apply Euler-Picard iteration in this case. The natural choice are C(π/2)-optimized
auxiliary methods (see figure 3), we take σ = 3, 10 and 20. The stopping criterion is (24) with

C0 = 1, the value of τ is also determined as before (25). For GPI we take toli = 10−3− 1

2
i,

i = 1, . . . , 14. For ROCK4 atoli = rtoli = 10−5− 1

2
i, i = 1, . . . , 19, the provided spectral radius

estimation is 1420. The quite predictable results are displayed in figure 5. The relatively poor
behaviour of the 20-stage auxiliary method is probably due to imperfection of accuracy control (24).
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