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Consider the nonstationary heat equation

Trr(r, z, τ) + r−1Tr(r, z, τ) + Tzz(r, z, τ) = a−1Tτ (r, z, τ) (1)

in cylindrical coordinates (r > 0, z > 0, τ > 0) in the case of axial symmetry under the initial
condition T (r, z, 0) = 0 and the mixed boundary conditions

−Tz(r, 0, τ) = λ−1q1(τ)q2(r), 0 < r < R, τ > 0, (2)
T (r, 0, τ) = 0, R < r <∞, τ > 0. (3)

The mathematical statement of this problem describes, in particular, a nonstationary temper-
ature field under a local heating of an isotropic half-space (with temperature conductivity a > 0
and thermal conductivity λ > 0) through a circular domain of radius R on the surface z = 0;
moreover, the surface of the half-space is thermally insulated outside this circular domain. In this
case, obviously, the homogeneous initial condition and the boundary condition (3) do not affect the
generality of the statement of the problem.

Applying the Laplace transform f̄(s) =
∫∞

0
f(τ) exp(−sτ)dx, Re s > 0, to problem (1)–(3),

for the Laplace transform of the temperature we have

T̄rr(r, z, s) + r−1T̄r(r, z, s) + T̄zz(r, z, s) = σT̄ (r, z, s), σ = s/a, (4)
−T̄z(r, 0, s) = λ−1q̄1(s)q2(r), 0 < r < R, (5)
T̄ (r, 0, s) = 0, R < r <∞. (6)

From now on, for brevity, we omit the obvious constraint Re s > 0 on the parameter s.
Taking into account the boundedness of T̄ (r, z, s) as

√
r2 + z2 → ∞ and using separation of

variables or the Hankel transform

H
[
T̄ (r, z, s)

]
= T̄H(p, z, s) =

∞∫
0

T̄ (r, z, s)J0(pr)r dr, p > 0,

we can write out the solution of Eq. (4) in the form

T̄ (r, z, s) =

∞∫
0

C̄(p, s) exp
(
−z
√
p2 + σ

)
J0(pr)dp (7)

and represent the normal derivative on the surface z = 0 as

−T̄z(r, z, s) =

∞∫
0

C̄(p, s)
√
p2 + σ exp

(
−z
√
p2 + σ

)
J0(pr)dp, (8)
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where C̄(p, s) is the unknown transform to be determined and J0(pr) is the Bessel function of the
first kind and zero order.

Taking into account the mixed boundary conditions (5) and (6), for C̄(p, s), we obtain the pair
of integral equations

∞∫
0

C̄(p, s)
√
p2 + σJ0(pr)dp = λ−1q̄1(s)q2(r), 0 < r < R, (9)

∞∫
0

C̄(p, s)J0(pr)dp = 0, R < r <∞, (10)

in the domain of L-transforms.
By choosing the functions C̄(p, s) in the form [1]

C̄(p, s) =
p√

p2 + σ

R∫
0

ϕ̄(t, s) sin
(
t
√
p2 + σ

)
dt, (11)

where ϕ̄(t, s) is some new unknown analytic function, we guarantee the validity of (10), since
[2, p. 203]

∞∫
0

sin
(
t
√
p2 + σ

) pJ0(pr)√
p2 + σ

dp =
{ 0 for r > t

(t2 − r2)−1/2 cos
(√

(t2 − r2) σ
)

for r < t.

Substituting (11) into (9) and following the lines of [1], for the transform ϕ̄(t, s), we obtain the
integral equation

r∫
0

tϕ̄(t, s)√
r2 − t2

exp
(
−
√

(r2 − t2) σ
)
dt+

R∫
0

ϕ̄(t, s) sin
(
t
√
σ
)
dt −

R∫
r

tϕ̄(t, s)√
t2 − r2

sin
(√

(t2 − r2)σ
)
dt

=
q̄1(s)
λ

r∫
0

q2(%)% d%, 0 < r < R.

Applying the integrating factor 2µ cos
(√

(r2 − µ2)σ
)

/
√
r2 − µ2 and performing manipulations

similar to the solution of the Abel equation in [3, p. 46], we arrive at the integral equation

ϕ̄(t, s)− 1
π

R∫
0

ϕ̄(%, s)
[

sin ((%− t)
√
σ )

%− t − sin ((%+ t)
√
σ )

%+ t

]
d%

=
2q̄1(s)
πλ

t∫
0

q2(µ) cos
(√

(t2 − µ2) σ
)
µ√

t2 − µ2
dµ, 0 < t < R,

or

ψ̄(t, s)− 1
π

R∫
0

ψ̄(%, s)
[

sin ((%− t)
√
σ )

%− t − sin ((%+ t)
√
σ )

%+ t

]
d%

=
2
πλs

t∫
0

q2(µ) cos
(√

(t2 − µ2) σ
)
µ√

t2 − µ2
dµ, 0 < t < R,
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where ψ̄(%, s) := ϕ̄(%, s)/ (sq̄1(s)). There is no ready-to-use method other than the approach of [4]
for the solution of the last integral equation in the domain of L-transforms.

We represent the unknown function ψ̄(t, s) in the form of the series

ψ̄(t, s) = exp
(
−R
√
σ
) ∞∑
n=0

ψn(t)
(√

s
)n−2

=
1
s

exp
(
−R
√
σ
)
ψ0(t) + exp

(
−R
√
σ
) ∞∑
n=0

ψn+1(t)
(√
s
)n−1

,

(12)

which justifies the existence of the inverse Laplace transform L−1
[
ψ̄(t, s)

]
, since

L−1
[
s−1 exp

(
−k
√
s
)]

= erfc
(
k/
(
2
√
τ
))
,

L−1
[(√

s
)m−1

exp
(
−k
√
s
)]

=
(

exp
(
−k2/(4τ)

)
/
(

2m
√
πτm+1

))
Hm

(
k/
(
2
√
τ
))
,

where

erfc(x) =
2√
π

∞∫
x

exp
(
−t2
)
dt = 1− erf(x) = 1− 2√

π

∞∑
k=0

(−1)kx2k+1

k!(2k + 1)
,

Hm(x) = m!
∑[m/2]

k=0 (−1)k(2x)m−2k/(k!(m− 2k)!) is the Hermite polynomial [5].
Following [4], we construct a recursion formula for the functions ψn(t) occurring in (12):

ψn(t) =
2
πλ

n∑
j=0

Anj(R)

t∫
0

(√
t2 − µ2

)j−1

q2(µ)µdµ+
1
π

n∑
m=0

R∫
0

Cm(%, t)ψn−m(%)d%, (13)

ψ0(t) =
2
πλ

t∫
0

q2(µ)µ√
t2 − µ2

dµ, Anj(R) =
1
n!

(
1√
a

)n(
n

j

)
Rn−j cos

(
jπ

2

)
,

Cm(%, t) =
1
m!

(
1√
a

)m
sin
(mπ

2

) [
(%− t)m−1 − (%+ t)m−1

]
,

where
(
n

j

)
are the binomial coefficients.

Successively substituting the expressions (13) into (12) and the resulting relations into (11) and
finally into (7), we can find the solution of the problem in the domain of L-transforms:

T̄ (r, z, s) = q̄1(s) exp
(
−R
√
σ
) R∫

0

ψ0(t)

∞∫
0

exp
(
−z
√
p2 + σ

)
sin
(
t
√
p2 + σ

) pJ0(pr)√
p2 + σ

dp dt

+ q̄1(s) exp
(
−R
√
σ
) ∞∑
n=0

(√
s
)n+1

n+1∑
j=0

[
2
πλ
An+1 j(R)

R∫
0

t∫
0

(√
t2 − µ2

)j−1

q2(µ)µ

×
∞∫

0

exp
(
−z
√
p2 + σ

)
sin
(
t
√
p2 + σ

) pJ0(pr)√
p2 + σ

dp dµ dt

+
n+1∑
m=0

1
π

R∫
0

R∫
0

Cm(%, t)ψn+1−m(%)

∞∫
0

exp
(
−z
√
p2 + σ

)
sin
(
t
√
p2 + σ

)

× pJ0(pr)√
p2 + σ

dp d% dt

]
,

(14)

DIFFERENTIAL EQUATIONS Vol. 37 No. 2 2001



260 MANDRIK

where r > 0, z > 0, and Re s > 0. We can readily see that this solution satisfies the mixed
boundary conditions (5) and (6) for z = 0.

In the special case q1(τ)q2(r) = const, the inverse transform T (r, z, τ) of the solution was found
in [1, 4]. For general q1(τ)q2(r), the inverse transform of the solution can be found with the use of
the inverse formula for the Laplace integral [5, p. 807 of the Russian translation; 6, p. 499]:

T (r, z, τ) =
1

2πi

α+i∞∫
α−i∞

exp(τs)T̄ (r, z, s)ds.

Note that the solution (14) satisfies the well-known limit relations as s → 0 (τ → ∞) and as
s→∞ (τ → 0) provided that the limits lims→0 [sq̄1(s)] and lims→∞ [sq̄1(s)] exist.
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