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Suppose that we must find a solution of the differential nonstationary (7 > 0) heat equation

Opr(r,2,7) +7710,(r,2,7) + 0..(r,2,7) = a '0.(r,2,7) (1)
in the cylindrical coordinates (r,z > 0) for a half-space with the homogeneous initial condition
0(r,z,0) =0 (2)

and the mixed boundary conditions
0(r,0,7) = fi1(r) fa(7), 0<r<R, 0.(r,0,7) =0, R < r < oo, (3)
on the surface z = 0 in the case of the axial symmetry 6,.(0,z,7) = 0.
If to problem (1)—(3), we apply the Laplace integral transform (the L-transform)

O(r,z,8) = LO(r,z,7)] = /«9(7”,2,7’) exp(—sT)dr, Res > 0,
0
then the problem acquires the form
Opr(r,2,8) +7710.(r,2,8) + 0..(r, 2, 8) = 00(r, 2, 5), o =s/a, (4)
0(r,0,5) = f1(r) fa(s), 0<r<R, 0.(r,0,5) =0, R <r < oo, (5)

where

_ / Fo(r) exp(—s7)dr. (6)

Theorem. Suppose that the integral (6) exists, the real part of the parameter s is positive

(i.e., Res > 0), and the temperature remains bounded as \/r> + 22 — oo. Then the solution of the
problem can be represented via L-transforms in the form

0(r,0,5) = 22 g (- Rf)/eXp (_Zm)%

0

R t
d
x/cos(t p2+a> E/Fl(t,u) dt
0 0
—|—Mexp( Rf)/exp(—z\/p2+a)pjo P dpz (k+1)/2/cos(t p2—|—0)
T 24+ 0o
0
k+1
dt/Dk—H (Rt p) Fi(t, d”+z()/c T, 1) Pr—mi1(v)dz | dt,
m=Y0
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where
Cp(z,t) = 1/m' (\/5) "sin(mn/2) [(x — )"+ (z + 1), (8)
iy n—j jm 2 _ 2 7
D,(R,t,pu) = ;()R 005(2)< t u), 9)
Fi(t, p) W)/ t? — p2, the ( ) are the binomial coefficients, and Jo(pr) is the Bessel function

of the ﬁrst kind.
Proof. The solution of Eq. (4) has the form [1]

O(r,z,8) = /OOC_'(p, s) exp (—z:\/p2 + 0) Jo(pr)dp, (10)

where C(p, s) is the unknown function for which the following dual integral equations in terms of
L-transforms can be obtained from (5):

[ o niondy = 5. 0<r<R
0 (11)
/C(p,s)\/pQ—l—aJo(pr)dp—O, R<r<oo.

If we introduce a new unknown function @(¢,s) by the formula

C(p,s) = o(t, s) cos P2+ a) dt, (12)

\/p——l—a/

then, using the substitution (12), we can readily show that the second dual integral equation
in (11) is automatically valid with regard for the following well-known value of the discontinuous
integral [2, p. 203]:

\/ﬁ&n(@“vp +J>d {cos( (xQ—r2)0>(x2—r2)71/2 if x>
0

The substitution of (12) into the first equation in (11) gives the integral equation

S (VP ) [ in (V0 ) dt = A1)

0<r<R,

(13)

with regard for the following well-known value of the discontinuous integral [2, p. 203]:

[ 2ter exp (V=)0 ) (2 =) i r<r
[
o VPre sin (—/@ =70 ) (2 =) it 1>
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The integral equation (13) in terms of L-transforms is a basis for finding the unknown function
@(r,s). Wereduce it to a Fredholm integral equation of the second kind (but with the parameter s).
To this end, we divide both sides of Eq. (13) by fa(s) # 0, replace r by p, and multiply the resulting

)71/2

relation by the integrating factor 2u cos ( (r2 — u?) 0) (r? — u? . Further, integrating both

sides of the equation with respect to p from 0 to r, we obtain

 cos ( (r2 — pu2) J) r: 5" (t, 5)
/ o ee

peos(VIT=i9) gt
—/ E— L msm( (t2—,u2)0>dtdu
w

jfl(u) cos (/7 = 1) )

TQ—MQ

(— (u? —t?) 0) dtdu

0

wdp, 0<r <R,

where

F(t,s) = g(t,s)/ (sfals)) - (14)

Changing the order of integration on the left-hand side of the last relation and computing the
resulting integrals, we arrive at the integral equation

T R
1
/@*(t,s)dt— ;/@*(t,s) [si (¢4 1)V ) —si ((t — r)v/a)] de
0 0
) /’"f1<u> cos (/7= 7))
- /,r2 _ ,LL2
where si(z) is the sine integral [3, p. 59 of the Russian translation]. Hence, differentiating both

sides with respect to r, we obtain the following integral equation in terms of L-transforms for the
function @*(r, s):

wdp, 0<r<R,
TS
0

P(rs) — — /R &*(t,s)K(r,t,s)dt = F(r,s), 0<r<R, (15)

where
Rt = SUEDVE) | sin(l411Y5), 16)
R B R AL (VoZ =170 .

= wdp.
s dr 12— p?

0

Note that the solution of problem (15)—(17) with f;(¢) = 1 was found in [4]. Here we find the
solution in the case of a general function f;(u).

We represent the unknown analytic function ¢*(r, s) as the function series

oo

o (r,s) = %exp (—R\/E)Zgon(r) (\/E)n, 0<r<R, (18)

n=0
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where the ¢, (r) are some auxiliary functions. The kernel K (r,t,s) given by (16) can be repre-
sented as

K(rt.s) =Y Clt,r) (Vs)",

and

exp (Ry/o ) cos (x/(r2 — ,u2)0) = %ZD,Z(R,T,,U,) (Vs)",

where Cj(t,r) and D,,(R,r, u) are given by (8) and (9), respectively.
Substituting these expressions into (15) and performing related multiplications of series, we ar-
rive at the relation

™y () (V5)'
-y %/DH(R,r,u)ﬁ( +Z /C (t)enn(t)dt| (V)"

m=0

0 < r < R, which is not an integral equation for ¢, _,,(t), since, obviously, Cy(¢,r) = 0.
Therefore, for the unknown auxiliary functions ¢, (r), we can readily write out the recursion
formula

fi(p)pdu /
= D, (
(pn( 7Td’l”/ 77 )\/7 Z C t’rtpn m()dt, 0<7“<R,

which, in particular, implies that

R
2R d poo 4 Ji(p)pdp

_ /fl ud,u _ /fl wpd
7Td’l” il m/a dr e 7r2\/— VER2— 2

and so on.
Substituting the expression for ¢, (r) into (18), we can find the transform @*(r, s), for which the
inverse Laplace transform exists, since

L™t E exp (—R\/E)] = erfc (

i)

1 RQ R
=1 [(k—=1)/2 _ - - _ -
L7 s exp (~ V7)) 2k\/rrk+l P ( 4a7’> H (2\/E> ’

where erfc(z) = (2/y/7) [ exp (—t?)dt and Hy(z) is the Hermite polynomial [3, p. 579 of the
Russian translation|. Performing related substitutions, we obtain

@(T, 8) — 2fj_{_(8) eXp /fl Md:u’

f2(s) _ 1)z | 4 [ fi(ppdp
+ o exp( R\/E);SkJrl 2 dTb/DkJ’_l(R’T’M)\/m

T Z /Cm(tar)@k—m-i-ﬂt)dt].

m=0 0
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Then, using (12) and (10), we can write out the solution of the original problem in terms of
L-transforms in the form (7), which, together with the inversion formula for the Laplace integral
[5, p. 205 of the Russian translation], gives 6(r, s, 7). This completes the proof of the theorem.

Note that if fi(u) = T. — Ty = const # 0, where Ty is the initial temperature of the half-space
and T, is the temperature on the surface z = 0 in the disk 0 < r < R, then the inner integrals in
the solution (7) can readily be evaluated:

R t . I
/cos(t p2+a> 4 [T=To)ndp dt:(T—TO)Sm(R p2+0>
dt ) 2 — p? ‘ N

R ¢
d T, —Ty) pd
/cos (t p2+a> E/DkH(R,t,,u)w dt

,/t2_M2

-e-my ST () (&)
s (J_7T> sin (R\/])Q——f—O'—f—nﬂ'/Q)
r(Veie)

2
where B(a, ) is the beta function [6, p. 24].
If s — 0 (7 — 00), then

lim [s@(r, s)] _wdr/fl i Hhm [sfa(s)] 3

s—0 2 s—0

in particular, if f;(u) = T, — Tp, then we have lim,_,q [s@(r, s)] = (2/7) (T. — 1), which coincides
with the similar solutions obtained in [7, 8] for the corresponding stationary Laplace equation with
mixed boundary conditions.
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