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Abstract
Conditions when the design for model of heteroscedastic observations subject

to linear or relay perturbation turns to the design for homoscedastic observations
are found in this article.

Let the experimental results at the design points xi, i = 1, 2, . . . , n , be described
by equation:

yi = θ0 + θ1xi + ε(xi), i = 1, . . . , n, (1)

where yi are observed variables; θ0, θ1 are unknown parameters; xi are controllable
variables from interval [−1; 1]; ε(xi) are random errors with mean zero.The variance
D {ε(xi)} = d(xi) accepts constant value d1, d1 > 0, when xi ∈ [−1, 1],−1 < c ≤ 1, i.e.
on this interval (c, 1] variance d(x) has linear perturbation

d(x) =
(d1 − d2)x + d2c− d1

c− 1
, d2 > 0, (2)

or it has relay perturbation
d(x) = d2, d2 6= d1, (3)

where d1, d2, c are the fixed constants.
For homoscedastic observations, i.e. d(x) = d1, x ∈ [−1, 1], D-optimal design is

ε0
n =

{
−1, 1
n1, n− n1

}
, (4)

where n1 = s for even n = 2s and n1 = s or n1 = s + 1 for odd n = 2s + 1.The
estimations of unknown parameters which is constructed under the design (4) do not
depend from d1 and are

θ̂0 =
1

2n1(n− n1)

{
(n− n1)

n1∑
i=1

y1i + n1

n−n1∑
i=1

y2i

}
, (5)

θ̂1 =
1

2n1(n− n1)

{
n1

n−n1∑
i=1

y2i − (n− n1)

n1∑
i=1

y1i

}
, (6)

where y1i are observations in the point −1 and y2iare observations in the point 1.
In this paper it will be shown that the design (4) and corresponding to it estimations

(5), (6) not to change for defined parameters d1, d2, c which determines perturbation
of homoscedastic observations.

The basic results of this paper are based on the following theorem.
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Theorem 1. Support points of exact D-optimal design for model of observations (1)
with linear perturbations of variance (2) (or relay perturbation of variance (3)) are -1,
c, 1.

Proof of this theorem is omitted.The full proof of this theorem is presented in [2].
From the theorem 1 follow that exact D-optimal design ε0

n is

ε0
n =

{
−1, c, 1
n0

1, n0
2 n− n0

1 − n0
2

}
, (7)

where n0
1, n

0
2 are solutions of a problem of quadratic programming

f(n1, n2) =
1

kd2
1

{
−4n2

1 − (c− 1)2n2
2 + b(k, c)n1n2 + 4nn2 + n(c− 1)2n2

}
→ max,

(8)
where

b(k, c) = k(1 + c)2 − c2 + 2c− 5, k =
d2

d1

and maximization in (8) is taken on set

G = {n1, n2 : 0 ≤ n1 ≤ n− 1, 0 ≤ n2 ≤ n− 1, 1 ≤ n1 + n2 ≤ n} . (9)

We investigate the following problem. What is the set of parametries d1, c, d2 which
can guarantee that design (7) for heteroscedastic observations convert to the design (4)
for homoscedastic observations? There are two approaches to resolve this problem.

The first approach consists in numerical solution of a problem of quadratic pro-
gramming (8), (9) and choose those values d1, c, d2 which guarantee that the design
(7) convert to the design (4), i.e. it is necessary to find some conditions which allow
to conclude that n0

2 = 0. One effective method of solution numerical the formulated
problem (8), (9) is presented in paper [3]. But this method to determinate conditions
when n0

2 = 0 is a little effective.
The second approach to our problem consist in finding the analytical conditions

which can help us to form optimal design of experiments (4) stable to perturbation of
variance d(x).

In article [4] it is proved that design (4) does not change if variance of observations
d(x) satisfies to an inequality

d(x) ≥ ϕ(x), x ∈ [−1, 1], (10)

where

ϕ(x) =
d1

4

{
(1 + k)x2 + 2(k − 1)x + 1 + k

}
, (11)

and (11) is a parabola which is passing through points (-1,d1) and (1,d2).
In the case when the inequality (10) is not holds the spectrum of the optimal design

(7) can have two or three points.
Our task is investigate when inequality (10) holds good,i.e. when perturbation of

variance (2), or (3) not influence on optimal design (4).
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At first we will consider a case of linear perturbation (2) then we will consider a
case of relay perturbation (3).

1. Case of linear perturbation. In this section we will consider six subcases.
1.1. In the case when c = −1 the inequality (10) holds. In this case the variance

of observations linearly increases or decreases on the interval [-1,1]. It follows from the
fact that function (11) is convex. Thus in this case the design (4) and estimations of
unknown parameters corresponding to it remain invariable. Estimations of unknown
parameters do not depend on values d1 and d2. It follows from this that they are
mutually eliminated in the course of their construction.

1.2. In the case when 0 < k ≤ 1, i.e. if 0 < d2 ≤ d1, inequality (10) holds
and it guarantee that design (4) and corresponding to it estimations (5), (6) remains
invariable. It follows from this that function ϕ(x) is convex and function d(x) is concave
for x ∈ [−1, 1].

1.3. In the case when k > 1, i.e. if d2 > d1, inequality (10) holds if −1 < c ≤ c1

where

c1 =
3− k

1 + k

is solution of equation ϕ(x) = d1. The substation of this fact is reduced in paper
[4]. So, in the case d2 > d1 and −1 < c ≤ c1 D-optimal design for heteroscedastic
observations look like (4) and estimations of unknown parameters corresponding to it
are equal (5), (6) and not depend from d1, d2. However in this subcase it is necessary
to know the value exact of k, i.e. to know precisely in how much time d2 is more d1. It
as a rule is not known precisely for the experimenter.This restruction will be eliminated
in a following subcases.

1.4. Let k > 1, k ∈ [k−, k+], k− > 1, where k−, k+ are fixed and known to
the experimenter. Function

f(k) =
3− k

1 + k

decreases monotonically on the interval [k−, k+] as its derivative is negative. Hence,
if k varies from k− to k+ value c1 belong to an interval [c1−, c1+] where

c1− =
3− k+

1 + k+

, c1+ =
3− k−
1 + k−

.

Using outcomes of subcase 1.3 we conclude that if c ≤ c1− in this case the design (7)
is converted in the design (4) for all k ∈ [k−, k+].

1.5. In this subcase we will assume that values c and k are not known precisely
and k > 1. But the experimenter know precisely that c ∈ [c−, c+], k ∈ [k−, k+], k− > 1,
where c−, c+, k−, k+ are fixed values. If c+ ≤ c1−, it agree a subcase 1.4, we can conclude
that the optimal design (7) is convert in the design (4) for homoscedastic observations.

1.6. In this subcase we will assume, in difference from the previous subcase, that
c, k are random variables. In this subcase it is possible to indicate conditions when the
design (7) convert to the design (4). However these conditions will be fulfilled with
certain probability which we can calculate. The limited volume of this paper does not
allow to investigate this subcase completely.
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2. Case of relay perturbation. Case of relay perturbation is investigated in
the same way as a case 1. The limited volume of given article also does not allow to
investigate this case in details.
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