
PURE-PROJECTIVE MODULES
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Abstract. The question is addressed of when all pure-projective mod-

ules are direct sums of finitely presented modules. It is proved that this

is the case over hereditary noetherian rings. Partial results are obtained

for uniserial rings. Some of the methods are model-theoretic, and the

techniques developed using these may be of interest in their own right.

1. Introduction

It is well known that a module is pure-projective if and only if it is a

direct summand of a direct sum of finitely presented modules. Our principal

concern is the question of when all pure-projective modules are direct sums

of finitely presented modules (or, equivalently, of finitely generated modules,

for finitely generated pure-projectives are finitely presented).1 By a theorem

of Maranda, the answer is yes for abelian groups, that is over the ring of

integers, see [7, Thm. 30.2].

If the ring is Krull–Schmidt in the sense of [8], i. e., when every finitely

presented module is a direct sum of modules with a local endomorphism ring,

then the Krull–Remak–Schmidt–Azumaya theorem implies that, again, the

answer is yes. All right noetherian, (two-sided) serial rings are examples of

such rings (by Fact 5.1, which holds for serial rings as well, and [5, Prop. 9.24]

or [12, Lemma 2.11]).

Our development of the decomposition theory of pure-projective modules

can be outlined as follows.

After recollection of some model-theoretic preliminaries in Section 2, we

introduce pure-projectives and develop some of their model theory in Section
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3—based on the second author’s description of countably generated pure-

projective modules, Fact 3.4. The main result in this section is what we call

the telescoping map theorem, Theorem 3.7.

As a first application of this machinery, we give an easy proof of the Bass–

Björk result, Theorem 4.2, that if every flat right R-module is projective,

then every left R-module has the d.c.c. on finitely generated submodules.

In Section 5 we deal with uniserial rings. The decomposition theory of

pure-projectives is little understood there. Even over a uniserial domain R

it is possible to have an indecomposable pure-projective module which is

not finitely generated. In [12, proof of Lemma 14.21] such a module was

constructed in the category Add(M) of a cyclically presented module M ,

i. e. of a module of the form R/rR, where r ∈ R. Here Add(M) denotes

the smallest additive category containing M (whose objects are the direct

summands of direct sums of copies of M). We are able, however, to answer

our original question within this restricted category: we completely deter-

mine when every (pure-projective) module in Add(R/rR) is a direct sum

of finitely generated modules. This is the same as to determine when every

projective module over the ring S = End(R/rR) is free, see Theorem 5.8.

In the final Section 6 we answer in the positive our original question

for (two-sided) hereditary noetherian rings by showing that every pure-

projective module over such a ring is a direct sum of finitely generated

modules, Cor. 6.5. The heart of the proof is the special case of hereditary

noetherian prime rings, Thm. 6.5. This section does not use the machinery

developed earlier but is rather based on a general result, Lemma 6.3, say-

ing that, over a semihereditary semiprime Goldie ring pure-projectives are

torsion-splitting.

Unless stated otherwise, all our modules are right modules over an as-

sociative ring R with 1, that is, we work in the category Mod-R. All our

unexplained terminology is standard and can be found in one of the texts

cited. (In particular, as for ring-theoretic terms, when no side is specified,

they are meant on either side; e. g., a hereditary noetherian ring is a two-

sided hereditary, two-sided noetherian ring.)

2. Free realizations

Basic definitions from the model theory of modules can be found in [11].

Below we recall but a few.
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As common, by a tuple we mean a finite sequence of elements, usually

denoted by overbarred small letters. Slightly abusing notation, we write

m ∈M to mean that each entry of the tuple m is in M .

By a pointed module we mean a pair (M,m) where M is a module and

m ∈M is a tuple of elements from M . A morphism of pointed modules (or

a pointed morphism), f : (M,m) → (N,n), is a homomorphism f :M → N

such that f(m) = n coordinatewise (in particular, m and n have to have the

same length).

Recall that a pp-formula is a formula of the form ∃ y (yA = xB), where

x, y are tuples of variables, and A, B are rectangular matrices over the ring

of appropriate size. We often use the shorthand A | xB (read: ‘A divides

xB’) for this formula. For instance, a | x stands for ∃ y (ya = x).

Given a pointed module (M,m) and a pp-formula φ(x) of the form ∃ y (yA =

xB), one writes M |= φ(m) (and says, m satisfies φ in M) if there is a tuple

n ∈M such that nA = mB. For instance, M |= (a | x)(m) iff m ∈Ma.

We write φ→ ψ if a tuple in a module satisfies ψ whenever it satisfies φ.

(So this is a statement about the entire category of all right R-modules.)

The pp-type of m in M , denoted ppM (m), is the set of all pp-formulae

satisfied by the tuple m in M .

It is easily seen that homomorphisms preserve pp-formulae: if f :M → N

and M |= φ(m), then N |= φ(f(m)), hence also ppM (m) ⊆ ppN (f(m)). In

particular, if f : (M,m) → (N,n) is a pointed morphism and M |= φ(m),

then N |= φ(n), hence also ppM (m) ⊆ ppN (n).

There are two well-known cases where the converse is true. (Another one

will be dealt with in Lemma 3.3 below.)

Fact 2.1. [11, Prop. 8.5, Thm. 2.8] LetM be finitely presented or N be pure-

injective. Suppose that m ∈M and n ∈ N are such that ppM (m) ⊆ ppN (n).

Then there exists a pointed morphism f : (M,m) → (N,n).

A pointed module (M,m) is said to be a free realization of a pp-formula

φ(x) if 1) M |= φ(m) and 2) if N |= φ(n) for some tuple n in a module N ,

then there is a pointed morphism (M,m) → (N,n). For instance, if a is an

element of the ring R, then (R, a) is a free realization of the formula a | x,
and (R/aR, 1+ aR) is a free realization of xa = 0. Both of these are finitely

presented in the sense that the underlying module is.
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Free realizations are never unique: one can always add arbitrary modules

or take pure injective envelopes without disturbing conditions 1) and 2)

above. In general, there is no ‘minimal’ free realization either.

However, as the following shows, all pp-formulae have a free realization,

even a ‘small’ one.

Fact 2.2. [11, Prop. 8.4] Every pp-formula has a finitely presented free

realization.

The pp-type p = ppM (m) is called finitely generated if there exists a

formula φ ∈ p such that φ → ψ for every ψ ∈ p. In this case φ is said

to generate p. It is easy to verify that for every free realization (M,m) (of

some pp-formula φ), the pp-type ppM (m) is finitely generated (by φ).

It is also not hard to prove that any pointed module (N,n) with under-

lying finitely presented module N is a free realization of some pp-formula.

This yields

Fact 2.3. [11, Prop. 8.4] Every pp-type in a finitely presented module is

finitely generated.

In fact one can pinpoint the generating formula precisely. LetM be given

by generators n and relations nA = 0, and let m = nB. Then ppM (m) is

generated by the formula ∃ y (yB = x∧ yA = 0). This can be generalized as

follows.

Fact 2.4. [16, Lemma 1.5] Suppose (M,m) is a pointed module such that

ppM (m) is finitely generated, and n is contained in the submodule generated

by m. Then ppM (n) is finitely generated.

More precisely, if n = mA and ppM (m) is generated by φ(x), then ppM (n)

is generated by ∃ y (yA = x ∧ φ(y)).

Proof. Let ψ ∈ ppM (n), and denote the formula ψ(xA) by δ(x). The latter

formula is in ppM (m), hence φ → δ. To prove ∃ y (yA = x ∧ φ(y)) → ψ(x),

let a satisfy ∃ y (yA = x ∧ φ(y)) in some module N . We have to show that

it also satisfies ψ. Choose witnesses b satisfying φ such that bA = a. As

φ→ δ, the tuple b also satisfies δ, i. e., a = bA satisfies ψ, as desired. �

We conclude with an algebraic description of finite generation of pp-types.

Lemma 2.5. Let (M,m) be a pointed module. Then the following are equiv-

alent.
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(1) p = ppM (m) is finitely generated.

(2) There is a finitely presented pointed module (N,n) and a ‘universal’

pointed morphism f : (N,n) → (M,m), i. e., given a finitely pre-

sented pointed module (K, k) and a pointed morphism g : (K, k) →
(M,m), the diagram below can be completed as shown.

(K, k)

g
��

h

zzu
u

u
u

u

(N,n)
f

// (M,m)

Proof. (1) ⇒ (2). Let φ generate p. Pick a finitely presented free realization

(N,n) of φ and let f be the corresponding map.

We know that ppK(k) is generated by a certain ψ(x). Applying g, we

obtain ψ ∈ p, and therefore φ → ψ, hence also ppK(k) ⊆ ppN (n). So the

desired h exists by Fact 2.1.

(2) ⇒ (1). Suppose that there is a universal pointed morphism f :

(N,n) → (M,m). Let φ generate ppN (n). We claim that φ generates

p. Applying f , we obtain φ ∈ p.

Suppose that ψ ∈ p. Let (K, k) be a free realization of ψ and g : (K, k) →
(M,m) the corresponding map. By the universal property, g factors through

f via a pointed morphism h : (K, k) → (N,n). Applying h to K |= ψ(k),

we obtain N |= ψ(n). Thus φ→ ψ. �

3. pure-projective modules

A module is said to be pure-projective if it is projective with respect to

pure-exact sequences. Warfield [20] showed that a module is pure-projective

if and only if it is a direct summand of a direct sum of finitely presented

modules, cf. [21, 33.6]. In other words, the class of pure-projective right R-

modules is precisely the class of objects in Add(mod-R) (where, as usual,

mod-R stands for the full subcategory of Mod-R of finitely presented right

R-modules).

We start with a remark that is crucial when trying to find certain finitely

presented direct summands in a pure-projective module.

Fact 3.1. [21, 34.1(3)] If N is a finitely generated pure submodule of a

pure-projective module M , then N is a direct summand of M . (For, by [21,
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34.1(2)], the factor M/N is pure-projective, hence the pure-exact sequence

0 → N →M →M/N → 0 splits.)

Pure-projective modules share many properties with finitely presented

modules, the most important model-theoretic one being the following, which

was noticed by Ivo Herzog, cf. [16, remark before 2. 3 (a)].

Fact 3.2. Every tuple in a pure-projective module has a finitely generated

pp-type.

Here is another similarity between pure-projective and finitely presented

modules (cf. Fact 2.1 above).

Lemma 3.3. Let M be a pure-projective and N an arbitrary module. Sup-

pose that m ∈M and n ∈ N are such that ppM (m) ⊆ ppN (n).

Then there is a pointed morphism f : (M,m) → (N,n). Consequently,

(M,m) is a free realization of any formula that generates ppM (m).

Proof. Being pure-projective, M is a direct summand of a direct sum of

finitely presented modules Mi, i ∈ I. Decompose m as (m1, . . . ,mk) in

⊕i∈IMi. If φi generates ppMi(mi) then φ = φ1 + . . . + φk generates p =

ppM (m), hence, by hypothesis, φ ∈ ppN (n). Therefore we can write n =

n1 + . . .+ nk so that N |= φi(ni) for each i.

Since each Mi is finitely presented, there is a pointed morphism fi :

(Mi,mi) → (N,ni). Then, for f = f1 ⊕ . . . ⊕ fk : ⊕i∈IMi → N , we have

f(m) = n. Now restrict f to M . �

By a variant of Kaplansky’s Theorem (see [5, Thm. 4.27]), every pure-

projective module is a direct sum of countably generated (and automatically

pure-projective) modules. This enables us to make extensive use of the

following key fact, a partial converse to Fact 3.2 (which is implicit also in

[17, Thm. 2.2]).

Fact 3.4. [16, Cor. 2.9 and Lemma 3.9] A countably generated module is

pure-projective if and only if all tuples have a finitely generated pp-type.

We can improve on this by keeping track of the pp-formulae involved.

Besides, it suffices to consider pp-types of generators.

Proposition 3.5. Let m1,m2, . . . be a countable sequence of generators for

a module M such that φi(x1, . . . , xi) generates pi = ppM (m1, . . . ,mi). Then
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M is a direct summand of N = ⊕i≥1Ni, where Ni is a finitely presented free

realization of φi(0, . . . , 0, x). In particular, M is pure-projective.

Proof. Let (Ni, n
′
i) be a finitely presented free realization of φi(0, . . . , 0, x),

and set Mi = ⊕i
k=1Nk. By induction on i we will construct elements ni ∈

Mi ⊆ N and an ascending chain of morphisms fi : Mi → M such that

Mi |= φi(n1, . . . , ni) and fi(nj) = mj for every j ≤ i. Then the map

f =
∪

i≥1 fi is an epimorphism N →M .

Further, the choice of φi yields the type inclusion

ppM (m1, . . . ,mi) ⊆ ppMi(n1, . . . , ni) = ppN (n1, . . . , ni).

Therefore g(mi) = ni defines a morphismM → N , for if m1r1+ . . .+miri =

0, by this inclusion, also n1r1 + . . . + niri = 0. Since fg(mi) = f(ni) = mi

for every i, the map f splits, and soM is a direct summand of N , as desired.

It remains to find ni as described. For i = 1 take n1 = n′1. Since N1 is

finitely presented, there is a pointed morphism f1 : (N1, n1) → (M,m1).

Suppose we have already constructed nk and fk for every k ≤ i. Clearly

φi(x1, . . . , xi) → ∃xi+1 φi+1(x1, . . . , xi, xi+1). Since Mi |= φi(n1, . . . , ni),

there is n′′i+1 ∈Mi such thatMi |= φi+1(n1, . . . , ni, n
′′
i+1). Applying fi we ob-

tainM |= φi+1(m1, . . . ,mi, fi(n
′′
i+1)). But alsoM |= φi+1(m1, . . . ,mi,mi+1),

and soM |= φi+1(0, . . . , 0,mi+1−fi(n′′i+1)). Since (Ni+1, n
′
i+1) is a free real-

ization of φi+1(0, . . . , 0, x), there is a pointed morphism f ′i+1 : (Ni+1, n
′
i+1) →

(M,mi+1 − fi(n
′′
i+1)). Now take fi+1 = fi ⊕ f ′i+1 and ni+1 = n′′i+1 + n′i+1.

Then

fi+1(ni+1) = fi(n
′′
i+1) + f ′i+1(n

′
i+1) = fi(n

′′
i+1) +mi+1 − fi(n

′′
i+1) = mi+1 .

Finally, addingMi |= φi+1(n1, . . . , ni, n
′′
i+1) andNi+1 |= φi+1(0, . . . , 0, n

′
i+1)

we obtain Mi+1 |= φi+1(n1, . . . , ni, ni+1). �

In the following lemma, which will be used in the next section, we address

the question about when a pp-type in a direct limit is finitely generated.

Lemma 3.6. Let ⟨(Mi,mi), fij⟩ be a directed system of pointed modules

over the directed set I, where (Mi,mi) is a free realization of φi for every

i ∈ I. Let further ⟨(M,m), fi⟩ be the corresponding direct limit. Then the

following are equivalent.

(1) ppM (m) is finitely generated;

(2) there exists i such that φi → φj for every j ≥ i.
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(3) there exists i such that all φj with j ≥ i are equivalent to φi.

Whenever these conditions hold, ppM (m) is generated by φi.

Proof. Applying fij toMi |= φi(mi) we obtainMj |= φi(mj), hence φj → φi

for all j ≥ i. Similarly, fi :Mi →M yields φi ∈ ppM (m) for every i. Denote

this latter type by p.

(1) ⇒ (3). Assume, p is generated by φ. As φj ∈ p, it follows that

φ → φj for every j. But M |= φ(m) implies Mi |= φ(mi) for sufficiently

large i. Since (Mi,mi) is a free realization of φi, we obtain φi → φ for these

i, hence also φi → φ→ φj → φi for every j ≥ i.

(2) ⇒ (1). Suppose i is as in (2). We claim φi generates p. We know

already that φi ∈ p. If now ψ ∈ p, as above it follows that φj → ψ for

sufficiently large j. Choosing j ≥ i, by (2), we obtain φi → φj → ψ.

As (3) ⇒ (2) is trivial, this completes the proof. �

The next result, which was inspired by Dung and Facchini [3, Thm. 4.9]

(see also [5, Prop. 9.30]), will be used in the main theorem on uniserial rings

below. Some more motivation may be in order. Although this is not the

point of view taken in the next proof, a direct limit (M,fi) of a direct system

of modules, (Ni, fij), i, j ∈ I, can be regarded as an epimorphic image of

the direct sum ⊕i∈INi. Further, the corresponding epimorphism is easily

seen to be pure, cf. [21, 33.9 (2)]. So, if M itself is pure-projective, this

map splits, i. e., M is a direct summand of ⊕i∈INi. However, this is a mere

existence statement, which does not indicate the complement, let alone the

map constituting the splitting. This exactly is what the (proof of the) next

theorem does—in the case thatM is countably generated. (Note that it also

constitutes a generalization of Eilenberg’s trick.)

Theorem 3.7 (The telescoping map). Suppose that M is a countably gen-

erated pure-projective module. If M is the direct limit of a direct system

(Ni, fij), i, j ∈ I, then M ⊕⊕i∈INi
∼= ⊕i∈INi.

Proof. Represent the elements of M as (equivalence classes of) pairs (m, i)

with i ∈ I and m ∈ Ni, and where (m, i) = (n, j) if there exists k ≥ i, j such

that fik(m) = fjk(n).

Let m1,m2, . . . be a countable list of generators of M . By Fact 3.4, the

pp-type of any finite tuple of elements from this list is generated by a single

formula. Therefore there is a chain of indices i1 < i2 < . . . ∈ I such that
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mk = (nk, ik) and the tuple (m1, . . . ,mk−1,mk) has the same pp-type in M

as the tuple (fi1,ik(n1), . . . , fik−1,ik(nk−1), nk) in Nik .

Denote {i1, i2, . . .} by I ′. First we show that M ∼= lim−→i,j∈I′(Ni, fij).

Since any element m ∈M is a linear combination of some of the (nk, ik),

we may write m as (n, j), where j is the highest occurring index from I ′

(in that linear combination) and n is the corresponding linear combination

of the fik,j(nk). Hence, the natural map lim−→i,j∈I′(Ni, fij) → lim−→i,j∈I(Ni, fij)

(induced by the inclusion I ′ ⊆ I) is onto.

To prove that this map is also mono, let m = (n, j) go to zero, i.e., m = 0

in M . Notice that the aforementioned equality of pp-types is preserved by

passing to the corresponding linear combinations, hence ppM (m) = ppNj (n),

and so n = 0 as well. But then m = (n, j) = 0 also in lim−→i,j∈I′(Ni, fij).

Thus we may assume that M = lim−→i,j,∈I′(Ni, fij), and if we prove M ⊕
⊕i∈I′Ni

∼= ⊕i∈I′Ni, then adding⊕i∈I\I′Ni to both sides finishes off the proof.

We may therefore even assume that I = ω = {1, 2, . . .}, that mi = (ni, i)

with ni ∈ Ni, and that ppM (m1, . . . ,mk−1,mk) = ppNk
(f1k(n1), . . . , fk−1,k(nk−1), nk).

Then every elementm = m1r1+m2r2+. . .+mkrk inM has a representation

(n, k) with n = f1,k(n1)r1 + f2,k(n2)r2 + . . .+ nkrk.

Since M is pure-projective, by Lemma 3.3, there exists a morphism gk :

M → Nk such that gk(mi) = fik(ni) for every i ≤ k. It is easily checked that

therefore gk(m) = n when m = (n, k) is a representation as in the previous

paragraph.

Let N = ⊕i∈INi and define g :M → N by sending m ∈M to

(g1(m), g2(m)− f12g1(m), . . . , gk(m)− fk−1,kgk−1(m), . . .).

Since gj+1(mi) = fj,j+1gj(mi) for every j ≥ i, this map is well defined.

We claim, ker(g) = 0 (and so im(g) ∼= M). Indeed, let m ∈ M be in the

kernel and represent it by m = (n, k) as above so that gk(m) = n. From

g(m) = 0 we successively obtain 0 = g1(m) = . . . = gk(m) = n, hence

m = (0, k) is zero in M .

Now define h : N →M by h(l1, . . . , lk, 0, . . .) = (l1, 1)+ . . .+(lk, k). Then

hg(mi) = h(g1(mi), g2(mi)− f12g1(mi), . . . , gi(mi)− fi−1,igi−1(mi), 0, . . .) =

(g1(mi), 1)+(g2(mi), 2)−(f12g1(mi), 2)+. . .+(gi(mi), i)−(fi−1,igi−1(mi), i) =

= (gi(mi), i) = (ni, i) = mi.
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Thus g splits, i.e., N = im(g)⊕ker(h). As im(g) ∼=M , it remains to prove

that ker(h) ∼= N . To this end, let s : N → N be the map that sends n =

(l1, l2, . . . , lk, 0, . . .) to (l1, l2−f12(l1), . . . , lk−fk−1,k(lk−1),−fk,k+1(lk), 0, . . .).

We claim, ker(s) = 0; indeed, if s(n) = 0, we successively obtain 0 =

l1 = . . . = lk, whence n = 0. Hence im(s) ∼= N , and so it suffices to prove

im(s) = ker(h).

For im(s) ⊆ ker(h), consider n = (l1, l2, . . . , lk, 0, . . .) ∈ N . Then hs(n) =

(l1, 1)+(l2, 2)− (f12(l1), 2)+ . . .+(lk, k)− (fk−1,k(lk−1), k)− (fk,k+1(lk), k+

1) = 0, since (li, i) = (fi,i+1(li), i+ 1) for all i.

We are left with ker(h) ⊆ im(s). Let n be as before and h(n) = 0, i.e.,

(l1, 1)+ . . .+(lk, k) = 0. By the definition of direct limit, there is j ≥ k such

that f1j(l1) + . . .+ fkj(lk) = 0. We may take j to be strictly bigger than k.

Consider the element n′ ∈ N whose ith component n′i is defined as follows.

If i ≤ k, set n′i = f1i(l1)+. . .+fi−1,i(li−1)+li. If k < i ≤ j, set n′i = fk,i(n
′
k).

For i > j, set n′i = 0. Then easy calculations show that n′i+1 − fi,i+1(n
′
i) =

li+1 for all i < k and n′i+1 − fi,i+1(n
′
i) = 0 for k ≤ i < j, while n′j+1 −

fj,j+1(n
′
j) = −fj,j+1(n

′
j) = 0 because n′j = f1j(l1) + . . .+ fkj(lk) = 0 by the

choice of j.

Consequently, s(n′) = (l1, l2, . . . , lk, 0, . . .) = n, as desired, which com-

pletes the proof. �

In the proof of Theorem 5.8 we need one more technical fact about pure-

projectives. For this, recall that a module is called Bezout if each of its

finitely generated submodules is cyclic. A module M is said to be endo-

Bezout if SM is Bezout, where S = End(M).

Lemma 3.8. Given a pure-projective module M , the following are equiva-

lent.

(1) M is endo-Bezout.

(2) For any one-place pp-formulae φ and ψ, if the pp-type of some ele-

ment of M is generated by φ and the pp-type of some element of M

is generated by ψ, then there is an element of M whose pp-type is

generated by φ+ ψ.

Proof. Let m and n be arbitrary elements of M such that ppM (m) is gener-

ated by φ and ppM (n) is generated by ψ.
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(1) ⇒ (2). Condition (1) yields an element k ∈M such that Sm+ Sn =

Sk. We claim, r = ppM (k) is generated by φ+ ψ.

Write k = fm + gn, where f and g are in S. Then M |= φ(m) implies

M |= φ(fm), and M |= ψ(n) implies M |= ψ(gn). Then M |= (φ + ψ)(k),

i. e., φ+ ψ ∈ r.

It remains to prove that φ+ψ → ξ for every ξ ∈ r. Indeed, from m ∈ Sk

and M |= ξ(k) we obtain M |= ξ(m), hence φ→ ξ, as ppM (m) is generated

by φ. Similarly ψ → ξ, and so φ+ ψ → ξ.

(2) ⇒ (1). Condition (2) yields an element k ∈ M whose pp-type is

generated by φ+ ψ. As φ→ φ+ ψ, Lemma 2.1 implies m ∈ Sk. Similarly,

n ∈ Sk, hence Sm+ Sn ⊆ Sk.

If, conversely, l ∈ Sk, we have M |= (φ + ψ)(l). Write l = m′ + n′

accordingly so that M |= φ(m′) ∧ ψ(n′). As above there are f, g ∈ S such

that f(m) = m′ and g(n) = n′. Then l = m′ + n′ ∈ Sm+ Sn. �

4. A result of Bass and Björk revisited

As a first application of our techniques, using an idea of Sakhayev [18] we

give a new proof of a result of Bass and Björk, Theorem 4.2 below—a proof

that does not use Björk’s Theorem. We start with a special case of Prest’s

Lemma.

Remark 4.1. Let φ be the pp-formula A | x and ψ the pp-formula B | x.
Then φ→ ψ iff there is C such that A = CB.

Proof. If A = CB, then the implication φ→ ψ is obvious. For the converse,

assume φ → ψ, and let M be a free module generated by a tuple m of the

same length as x. Since mA trivially satisfies φ, it also satisfies ψ, i. e.,

M |= B | mA. Therefore there is some matrix C such that (mC)B = mA,

hence A = CB, as desired. �

We emphasize the fact that the following new proof makes no reference

to Björk’s Theorem.

Theorem 4.2 (Bass–Björk). If every flat right R-module is projective, then

every left R-module has the d.c.c. on finitely generated submodules.

Proof. Let M1 ⊇ M2 ⊇ . . . be a chain of left R-modules with each Mi

generated by some mi. Then mi+1 = Bimi for appropriate matrices Bi.
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Correspondingly, let N be the right module with generators n1, n2, . . .

and relations ni = ni+1Bi, i = 1, 2, . . ..

◦

��

n3
B2

...

◦

��

n2
B1

◦n1
Consider the free module Ni generated by a tuple xi (matching ni) and

the morphism fi,i+1 : Ni → Ni+1 given by xi 7→ xi+1Bi. It is easy to verify

that N , together with the maps fi : Ni → N given by fi(xi) = ni, is the

direct limit of the thus given directed system.

By Fact 2.4, the pp-type of fij(xi) in Nj is generated by the formula

Bj−1 · . . . · Bi | x. In particular, the pp-type of f1j(x1) in Nj is generated

by the formula Bj−1 · . . . · B1 | x, which we denote by φj . It is easy to see

that, in fact, (Nj , f1j(x1)) is a free realization of φj .

Being a direct limit of free modules, N is flat, hence, by hypothesis,

projective. In particular, N is pure-projective, and so, by Fact 3.2, ppN (n1)

is finitely generated. Therefore Lemma 3.6 yields i such that φi → φj for

every j ≥ i, i. e., Bi−1 · . . . ·B1 | x→ Bj−1 · . . . ·B1 | x. By Remark 4.1, there

is a matrix Cj−1 such that Cj−1Bj−1 · . . . · B1 = Bi−1 · . . . · B1. But then

mi = Bi−1 · . . . · B1m1 = Cj−1Bj−1 · . . . · B1m1 = Cj−1mj for every j ≥ i.

Consequently, the chain M1 ⊇M2 ⊇ . . . stabilizes after i steps. �

Notice, applying Theorem 3.7 to the directed system leading to N above,

we obtain N ⊕R(ω) ∼= R(ω), a fact that is known as Eilenberg’s trick for any

(countably generated) projective module.

5. Uniserial rings

The main objective of this section is to study the category Add(M) for

a cyclically presented module M = R/rR over a uniserial ring R. (Recall

that a module M is uniserial if the lattice of submodules of M is a chain,

while a ring R is uniserial if RR and RR are uniserial modules.) We will

determine when exactly this category is trivial in the sense that each module

in Add(M) is a direct sum of copies ofM . (Recall, the objects of Add(M) are

the direct summands of all the direct sumsM (I) of copies ofM , so all of them

are pure-projective.) In other words, we will answer our principal question
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stated in the introduction for this very special kind of pure-projective. For

the remainder of this section, we will work in this setting of Add(M) where

M is a fixed cyclically presented module R/rR over a uniserial ring R, where

without loss r ∈ Jac(R). For, every uniserial ring is local; hence, if r is not

in the Jacobson radical, then r is a unit and so R/rR = 0. Note that (even

for an arbitrary finitely generated right module M) the study of Add(M) is

equivalent to the study of projective right modules over S = End(M), since

there exists an equivalence between Add(M) and the category of projective

right S-modules, see [1, Lemma 29.4] or [5, Thm. 4.7].

Any cyclically presented R-module is uniserial and hence indecomposable.

The next fundamental result states that these are the building blocks for the

finitely presented modules.

Fact 5.1. (Drozd and Warfield, see [12, Thm. 2.3]) Every finitely presented

module over a uniserial ring can be decomposed into a finite direct sum of

uniserial cyclically presented modules.2

It was noticed by the first author ([12, Prop. 2.20], see also [5, Thm. 9.19])

that such a decomposition is unique.

The following result sheds some light on the structure of the category

Add(M).

Fact 5.2. [3, Cor. 2.8] If S is the endomorphism ring of a uniserial module

M , then every finitely generated projective right S-module is free. Conse-

quently, every finitely generated module in Add(M) is isomorphic to a direct

sum of finitely many copies of M .

As noted in [5, Prop. 3.12 (see also the remarks thereafter)], homing into

the ring constitutes a duality between the finitely generated projective left

modules and the finitely generated projective right modules (even for an

arbitrary ring), and therefore all the left ones are free if and only if so are all

the right ones. Thus, for S, the endomorphism ring of a uniserial module,

both the left and the right finitely generated projectives are free. Note that

such rings are even projective free in the terminology of Cohn [2, §0.2] (an-
other left–right symmetric notion, see [2, remark after Prop. 0.2.7]), which

means that finitely generated projectives are free of unique rank. Indeed,

2This holds also for serial rings, i. e. rings R such that both RR and RR are direct sums
of uniserial modules.
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being semilocal, S has finite dual Goldie dimension. Therefore the rank of

every finitely generated free right module is uniquely determined.

It is known that there are uniserial domains over which Add(M) can

have a nontrivial decomposition theory, i. e., there exists a projective right

S-module that is not free, see [13, Cor. 8.2]. We will give a precise criterion

for this to happen.

First we establish some important properties of cyclically presented mod-

ules over uniserial rings.

Lemma 5.3. Every cyclically presented module over a uniserial ring is

endo-Bezout.

Proof. According to [12, Cor. 11.15], every finitely presented module over

a uniserial ring is endo-distributive (that is distributive as a module over

its own endomorphism ring). Since M is uniserial, by [5, Thm. 9.1], S =

End(M) has at most two maximal right ideals, and S/ Jac(S) is a direct sum

of at most two skew fields. Now, by [19, 3.33], distributivity is equivalent to

the Bezout property over any ring which is abelian (von Neumann) regular

after factorization by the Jacobson radical. �

Note that every pure-projective module over a uniserial ring is endo-

distributive, but it is not known if it has to be endo-Bezout.

The previous lemma allows us to describe generation of pp-types in (pure-

projective) modules in Add(M).

Lemma 5.4. Let R be a uniserial ring and M = R/rR, where 0 ̸= r ∈
Jac(R).

The pp-types of non-zero elements in any N ∈ Add(M) are generated by

formulae of the form a | x ∧ xb = 0, where 0 ̸= a ∈ R and 0 ̸= b ∈ Jac(R)

such that r = ab.

Further, for non-zero elements m ∈M , the ring element a can be chosen

in the rR-coset m itself.

Proof. We first prove the assertion for M . So let m = a+ rR be a non-zero

element ofM . As (R/rR, 1+rR) is a free realization of xr = 0, Fact 2.4 tells

us that (M,m) is a free realization of the formula ∃ y (ya = x∧yr = 0). As R

is uniserial, either a ∈ rR, which contradicts m ̸= 0, or else r = ab for some

b ∈ R. Then, as is easily seen, b must be in Jac(R) and ∃ y (ya = x∧yr = 0)

is equivalent to a | x ∧ xb = 0.
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In order to prove this for any N ∈ Add(M), let 0 ̸= n ∈ N . Then N is

pure-projective, and ppN (n) is generated by a formula φ1 + . . .+ φk, where

φi generates the pp-type of somemi ∈M . AsM is endo-Bezout, Lemma 3.8

yields some element 0 ̸= m ∈ M with ppN (n) = ppM (m), and the assertion

follows from the first part of the proof. �

Next we cite two more technical facts, where, for r, s ∈ R, we write r ≤ s

if RrR ⊇ RsR, and r ∼ s if RrR = RsR.

Fact 5.5. [14, Cor. 3.2] Let R be a uniserial ring and 0 ̸= a, b, c ∈ Jac(R).

Then the following are equivalent.

(1) a | x ∧ xb = 0 → ca | x.
(2) a ∼ cab.

Notice, a ∼ cab is equivalent to a ∈ RcabR, for a ≤ cab always holds.

Fact 5.6. [12, Prop. 2.21] Let r, s be elements of a uniserial ring R. Then

the following are equivalent.

(1) R/rR ∼= R/sR.

(2) r ∼ s (i. e., RrR = RsR).

(3) r = usv for some units u, v ∈ R.

The following construction is used in the theorem below and may be of

interest in its own right.

Lemma 5.7. Suppose r1, r2, . . . ∈ Jac(R) are such that ri · . . . · r2 ̸= 0 for

every i > 1.

Then the module N with generators n1, n2, . . . and relations n1r1 = 0 and

ni+1ri+1 = ni for all i ≥ 1, is not finitely generated..

Proof. Depict N as shown.

◦

��

n2
r2

...

◦

��

n1
r1

◦0
If N were finitely generated, it would be generated by a single nk. We show

this is impossible. In fact, we will reach a contradiction from the assumption

that nk+1 = nks for some s ∈ R.
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Indeed, as nk = nk+1rk+1, this assumption yields nk+1(1 − rk+1s) = 0,

hence nk+1 = 0, for, by hypothesis, 1− rk+1s is a unit. Then nk+1 = nk =

. . . = n1 = 0. By the definition of N , n1 must be a linear combination of

the “relations,” whence

n1 = n1r1t1 + (n2r2 − n1)t2 + . . .+ (nmrm − nm−1)tm

for some ring elements ti. Comparing coefficients we obtain

1 = r1t1 − t2, 0 = r2t2 − t3, . . . , 0 = rm−1tm−1 − tm, 0 = rmtm.

These imply

0 = rmtm = rmrm−1tm−1 = . . . = rm · . . . · r2t2 = rm · . . . · r2(r1t1 − 1).

The right hand factor is a unit again, so rm · . . . · r2 must be 0, contradicting

the hypothesis. �

We are ready now to give the promised criterion.

Theorem 5.8. Let R be a uniserial ring, 0 ̸= r ∈ Jac(R), M = R/rR and

S = End(M). Then the following are equivalent.

(1) Add(M) is trivial, i. e., every module in Add(M) is isomorphic to

some M (I).

(2) Every projective right S-module is free.

(3) If r ∼ a ∼ b in R, then r ̸= ab;

(4) Every non-zero element of any module N ∈ Add(M) is contained in

a direct summand of N isomorphic to M .

(5) Every module in Add(M) contains a direct summand isomorphic to

M ;

(6) Every module in Add(M) contains a non-zero finitely generated di-

rect summand.

(7) Every module in Add(M) is a direct sum of finitely generated mod-

ules.

Proof. The equivalence of (1) and (2) follows from the aforementioned equiv-

alence of categories. The equivalence of (5) and (6) as well as that of (1)

and (7) follow from Fact 5.2. The implication (5) ⇒ (1) is [4, Cor. 2.10].

Since (4) ⇒ (5) is trivial, we are left with (1) ⇒ (3) and (3) ⇒ (4).
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(1) ⇒ (3). Assume, on the contrary, that there are a, b ∈ R such that

ab = r and a, b ∼ r. In particular 0 ̸= a, b ∈ Jac(R). We will produce a

module N in Add(M) which is not of the form M (I).

To this end we choose as follows non-zero elements r1, r2, . . . in Jac(R)

such that ri ∼ r and ri · . . . · r1 ∼ r for every i.

Since a ∼ b ∼ ab = r, we may start with r1 = b and r2 = a. Now

suppose, r1, . . . , ri have already been chosen so that ri · . . . · r1 ∼ r. Then

ri ·. . .·r1 ∼ b. By Fact 5.6, there are units u, v ∈ R such that ri ·. . .·r1 = ubv.

Then u−1ri · . . . · r1 = bv, hence au−1ri · . . . · r1 = abv = rv ∼ r, whence we

may take ri+1 = au−1.

We claim that the module N with generators n1, n2, . . . and relations

n1r1 = 0 and ni+1ri+1 = ni for i ≥ 1 is a uniserial pure-projective that is

(countably but) not finitely generated.

As cyclic modules over uniserial rings are uniserial and N is the union of

a chain of cyclic modules, we see that N is uniserial. Further, Lemma 5.7

says that N is not finitely generated. But it is countably generated, and

so to show that it is pure-projective, by Proposition 3.5, it suffices to check

that every pi = ppN (ni) is finitely generated, which we do next.

Fix i, and consider, for all j > i, the submodule Nj = njR of N . As

noted before Fact 5.5, ppNj (ni) is generated by the formula rj · . . . · ri+1 |
x ∧ xri · . . . · r1 = 0, which we denote by φj . Given k > j > i, we clearly

have φk → φj . We claim these formulae are in fact equivalent, for which we

just have to show that φj → rk · . . . · ri+1 | x. But this latter follows from

Fact 5.5 with c = rk · . . . · rj+1, a = rj · . . . · ri+1, and b = ri · . . . · r1, for
r ∼ rj ≤ rj · . . . · ri+1 = a ≤ cab = rk · . . . · r1 ∼ r.

Thus the formulae φj are equivalent for all j > i. Therefore, the types

ppNj (ni) are the same for all j > i as well. Hence they are the same as

ppN (ni), which means that the latter is finitely generated, as desired.

Now that we have proved the claim about N , we may apply to it the

(telescoping) Theorem 3.7 to obtain the decomposition

N ⊕⊕iR/(ri · . . . · r1R) ∼= ⊕iR/(ri · . . . · r1R).

But R/(ri · . . . · r1R) ∼= R/rR by Fact 5.6. Consequently, N ⊕M (ω) ∼=M (ω),

whence N ∈ Add(M).
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Finally, if N were of the form M (I), being uniserial it would have to be

isomorphic to M , which is impossible, as the latter is finitely generated and

N is not.

(3) ⇒ (4). Suppose N is in Add(M) and 0 ̸= n ∈ N . We must prove

that n is contained in a direct summand isomorphic to M . By Lemma 5.4,

ppN (n) is generated by a formula of the form a | x ∧ xb = 0, where ab = r,

a ̸= 0, and 0 ̸= b ∈ Jac(R).

If a is invertible, ppN (n) is obviously generated by the quantifier-free

formula xa−1r = 0, and hence nR is a (finitely generated) pure submodule

of the pure-projective module N , and consequently, by Remark 3.1, a direct

summand. It remains to notice that nR ∼= R/a−1rR ∼= R/rR ∼= M to see

that in this case we are done.

So assume, a is not invertible. Then 0 ̸= a, b ∈ Jac(R), which will allow

us to apply Fact 5.5 as follows.

Choose n1 ∈ N such that n1a = n. The type ppN (n1), too, is generated

by a formula a1 | x∧xb1 = 0 for some 0 ̸= a1 ∈ R and 0 ̸= b1 ∈ Jac(R) such

that a1b1 = r.

If a1 is invertible, n1R is a direct summand isomorphic to M as before,

and we are done again. If not, a1 ∈ Jac(R) as well.

Since ppN (n) is generated by a | x ∧ xb = 0, it follows that a | x ∧ xb =
0 → a1a | x. Hence from Fact 5.5 we obtain a ∼ a1ab = a1r. Then

r ≤ a1r ∼ a ≤ ab = r, hence a1r ∼ r. By Fact 5.6, this yields units u and v

such that r = ua1rv. As clearly rv ∼ r, (3) therefore implies ua1 ̸∼ r, hence

a1 ̸∼ r.

Next choose n2 ∈ N such that n2a1 = n1 and a formula a2 | x ∧ xb2 = 0

generating its pp-type in N , where a2b2 = r. We get the following picture.

◦

��

a2

◦

��

n2
a1

◦

��

n1
a

◦

��

n
b

◦0
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Again, if a2 is invertible, we finish as before. We conclude by showing

that there is no other possibility.

Indeed, if a2 were not invertible, it would be in Jac(R). Since ppN (n1)

is generated by a1 | x ∧ xb1 = 0, we would therefore obtain, as above,

a1 | x ∧ xb1 = 0 → a2a1 | x, hence a1 ∼ a2a1b1 = a2r, and thus r ≤ a2r ∼
a1 ≤ a1b1 = r. But this would imply a1 ∼ r, contradicting the above. �

For the convenience of the reader, we conclude with a direct proof of (4)

⇒ (1), because it is based on an argument that is very useful in applications

of Kaplansky’s Theorem. First of all, by the latter, we may assume that the

module N ∈ Add(M) in question is countably generated, say by n1, n2, . . ..

Now choose a direct summand M1
∼= M of N containing n1, and write

n2 = m21+n′2 ∈ N =M1⊕N1 accordingly. Then choose a direct summand

M2
∼= M of N1 containing n′2, and write n3 = m31 + m32 + n′3 ∈ M1 ⊕

M2 ⊕N2. Continuing like this, we obtain direct summands Mi
∼= M and a

decomposition N =M1⊕ . . .⊕Mk⊕Nk such that nk ∈M1⊕ . . .⊕Mk. Then

the submodule
⊕∞

i=1Mi of N contains all generators ni and is therefore all

of N , as desired.

6. Noetherian rings

Here we answer our main question in the affirmative for hereditary noe-

therian rings by showing that every pure-projective module over such rings

is a direct sum of finitely generated modules.

The main idea is to use the torsion theory generated by singular modules.

Recall that a ring R is right Goldie if R has finite right uniform dimension

and the a.c.c. on right annihilators.

Let R be a semiprime right Goldie ring. Then, by Goldie’s theorem, the

set of regular elements of R is a right Ore set, and R has a (right) classical

quotient ring Q = Q(R). Further, Q is a semisimple artinian ring and, as a

left R-module, it is flat (being a union of left modules Ra−1 ∼= RR, where a

is a regular element of R).

We say that an element of a module is torsion if it is annihilated by

a regular ring element. A module is said to be torsion if every element

of it is. By [10, Prop. 2.3.5], an R-module M is torsion iff it is singular,

i. e., iff the annihilator of any m ∈ M is an essential right ideal of R. The
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torsion elements of M form the torsion submodule T (M) of M . Note that

P =M/T (M) is a torsion-free module, i. e., T (P ) = 0.

The first goal is to prove that, in pure-projective modules, the torsion part

splits off. This is true even over semihereditary semiprime Goldie rings, as

we show in the following two lemmas.

Lemma 6.1. Let M be a finitely generated module over a semihereditary

semiprime Goldie ring. Then M = T (M)⊕ P where P is projective.

Proof. This can be proved as [10, Lemma 5.7.4]. It is worthwhile, however,

to emphasize where the left and the right Goldie conditions come in now,

which is why we reproduce the proof.

Since P =M/T (M) is finitely generated torsion-free and RQ is flat by the

right Goldie condition, tensoring P with Q embeds P (as a right R-module)

in Qn. As R is also left Goldie, any q ∈ Q can be written as c−1d, where

c ∈ R is regular. Multiplying by the common left denominator on the left,

we obtain an embedding of P in Rn.

Since R is (right) semihereditary, P is projective, hence the short exact

sequence 0 → T (M) →M → P → 0 splits. �

Note that semiheriditarity is symmetric for rings of finite uniform dimen-

sion [9, Thm. 7.64].

Remark 6.2. Every torsion-free module N over a semihereditary semiprime

Goldie ring is flat. (Indeed, in case that N is finitely generated, it is even

projective by the previous proof; for the general case, write N as a direct

limit of its finitely generated (projective) submodules.)

Lemma 6.3. Let M be a pure-projective module over a semihereditary

semiprime Goldie ring. Then M = T (M)⊕ P where P is projective.

Proof. As M is pure-projective, M is a direct summand of a direct sum

N = ⊕i∈IMi of finitely presented R-modules Mi. Let π : N → M be the

map that splits the inclusion M ⊆ N .

By the previous lemma, Mi = T (Mi) ⊕ Pi, where Pi is projective. Then

T (N) = ⊕i∈IT (Ni) and hence N = T (N)⊕ P , where P = ⊕i∈IPi is projec-

tive.

Clearly T (M) ⊆ T (N) and π(T (N)) ⊆ T (M), hence π also splits the

inclusion T (M) ⊆ T (N). Since T (N) is a direct summand of N , so is

T (M), whence the latter is a direct summand also of M .
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Thus M = T (M) ⊕ P , where P = M/T (M) is a torsion-free module.

By the above remark, P is flat. But every flat pure-projective module is

projective. �

In order to decompose a pure-projective module into a direct sum of

finitely generated submodules, we need to put some additional restrictions

on the ring.

Theorem 6.4. Let M be a pure-projective module over a hereditary noe-

therian prime ring R. Then M is a direct sum of finitely generated modules.

Proof. By Lemma 6.3, M = T (M) ⊕ P , where T (M) is torsion, and P is

projective. Since R is right hereditary, by a result of Albrecht, P is a direct

sum of finitely generated right ideals of R, see [2, (comments to) Thm. 0.2.9].

As above, T (M) is a direct summand of a direct sum of finitely generated

torsion modules. But by [10, Lemma 5.7.4], every finitely generated torsion

module over a hereditary noetherian prime ring has finite length. Thus

we may invoke the Krull-Remak-Schmidt-Azumaya theorem, in the form of

[1, Thm. 26.5] applied to the case where M is countably generated (which

suffices, as pointed out before Fact 3.4). �

Corollary 6.5. Every pure-projective module over a hereditary noetherian

ring is a direct sum of finitely generated modules.

Proof. By [10, Thm. 5.4.6], any hereditary noetherian ring is a direct sum of

hereditary noetherian prime rings and an artinian (hereditary) ring. So the

proof splits into two respective parts, the former of which is dealt with in the

theorem. In the latter, artinian, case, finitely generated modules have finite

length, so the Krull–Remak–Schmidt–Azumaya argument works again. �

It is not clear to us to what other noetherian rings this result might be

extended. The following example shows at least a limitation for our proof

to work.

Example 6.6. Let R be a local commutative noetherian domain which is not

uniserial (the power series ring F [[x, y]] over a field F will do). Consider a

non-unit 0 ̸= c ∈ R and a, b ∈ R such that the right ideals aR and bR are

incomparable. Let M be the finitely presented module ⟨x, y | xac+ ybc = 0⟩.
It is not hard to check that M is indecomposable, see (the proof of) [6,

Thm. 20.42].
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Since (xa+ yb)c = 0 and xa+ yb ̸= 0 in M , we conclude that T (M) ̸= 0.

Indeed, xa + yb = 0 in M means that xa + yb = (xac + ybc)d in the free

module generated by x and y. Equating coefficients at x, we obtain a = acd,

hence cd = 1, a contradiction.

By similar calculations, x ̸∈ T (M). Thus T (M) is not a direct summand

of M , and M/T (M) is not flat.
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