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Abstract

We give an example of a direct summand of a serial module that
does not admit an indecomposable decomposition.

1 Introduction

A module M is called uniserial if its lattice of submodules is a chain, and
M is serial if it is a direct sum of uniserial modules. In recent years the
theory of serial modules has been developed to a high level by many authors
inspired by pioneering investigations by A. Facchini. The reader is referred
to [5] for a general review and especially for a list of open problems.

Despite powerful ring and module theoretic methods used in the proofs,
some core problems of this theory remain unsolved. For instance it has
not been known up til now whether every direct summand of a serial mod-
ule is serial. This problem seems to be similar to the problem of Matlis
of whether a direct summand of a direct sum of indecomposable injective
modules admits a similar decomposition.

In this paper we give a negative answer to the former question. Precisely
we construct a direct summand M of a serial module such that M can not
be represented as a direct sum of indecomposable modules, in particular M
is not serial.

This example is found among the pure projective modules over a very
special uniserial ring — a so-called exceptional uniserial ring. A uniserial
ringR is said to be nearly simple ifR is not artinian and the unique nontrivial
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twosided ideal of R is its Jacobson radical. Puninski [11] has classified the
pure projective modules over nearly simple uniserial domains. It turned out
that over such a domain there are only three indecomposable pure projective
modules (all are uniserial) and every pure projective module is a direct sum
of indecomposables. But there is a small difference compound with the usual
property called finite representation type. Though finite indecomposable
decompositions of pure projectives over R behave very well, there are some
nontrivial identifications between pure projective modules of infinite Goldie
dimension.

A nearly simple uniserial ring R is called exceptional if R is prime and
contains zero divisors. In fact even the existence of such a ring has been con-
sidered as a difficult problem and the first example was found by Dubrovin
[2]. Continuing the lines of [11], in this paper we investigate pure projective
modules over an exceptional uniserial ring R. The above-mentioned three
uniserial pure projective modules also appear here. But one needs an ad-
ditional pure projective module W to state (conjecturally) that every pure
projective module over R is a direct sum of these four, and we prove that
W does not admit an indecomposable decomposition. Since every pure pro-
jective module over a uniserial ring is a direct summand of a serial module,
we obtain the desired counterexample.

The basis for almost all considerations in this paper is a precise descrip-
tion of the lattice of 1-pp-formulae over an exceptional uniserial ring. So
many proofs involve as a searching for an appropriate decomposition in this
lattice. The machinery used is a mixture of general ring theory and model
theory of modules, where we try to combine the advantages of each ap-
proach. Roughly speaking, ring theory is good for obtaining rough global
results, whereas the model theory of modules works on the level of a concrete
module.

For instance we prefer to consider countably generated pure projective
modules over a ring in the spirit of Ph. Rothmaler [7] as pp-atomic (infor-
mally “small”) modules. That makes it advantageous to bypass problems in
proving that a fixed module M is pure projective by considering M locally.

2 Preliminaries

Let M be a right module and N ⊂ M , then annR(N) = {r ∈ R | nr = 0
for every n ∈ N} is a right ideal of R. Similarly for S ⊂ R, an annihilator
subgroup of M , written annM (S), is {m ∈ M | ms = 0 for every s ∈ S}.
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Also lannR(S) = {r ∈ R | rS = 0} is a left ideal of R and rannR(S) = {r ∈
R | Sr = 0} is a right ideal of R.

Given a right ideal I of R let us define the second annihilator of I, written
ann2(I), as rannR[lannR(I)]. Clearly I ⊆ ann2(I). Similarly for a left ideal
J of R, the left ideal ann2(J) is lannR[rannR(J)].

A module M is locally coherent if every finitely generated submodule of
M is finitely presented. By [14, 26.1] any factor of a locally coherent module
by a finitely generated submodule is locally coherent. Also an arbitrary
direct sum of locally coherent modules is locally coherent. A module M is
said to be coherent if M is finitely generated and locally coherent. A ring R
is right (left) coherent if the module RR (RR) is coherent and R is coherent
means R is both left and right coherent. R is right coherent if and only
if the intersection of every pair of finitely generated right ideals of R is a
finitely generated ideal and, moreover, every right ideal rannR(r), r ∈ R, is
finitely generated.

A moduleM is said to be uniserial if the lattice of submodules ofM is a
chain and M is serial if M is a direct sum of uniserial modules. A ring R is
right (left) uniserial if the module RR (RR) is uniserial. R is uniserial if it
is right uniserial and left uniserial. Jac(R) will denote the Jacobson radical
of ring R. Since every uniserial ring R is local, Jac(R) is the largest right
(left, twosided) ideal of R. Also F = R/ Jac(R) is a skew field.

Remark 2.1 A uniserial ring R is right coherent iff for all (any) 0 ̸= r ∈
Jac(R), rannR(r) is a principal right ideal.

Proof. Since every finitely generated right ideal of a uniserial ring is princi-
pal, an intersection of two finitely generated right ideals is a principal right
ideal. So for right coherence it suffices to check that rannR(s) is a principal
right ideal for every 0 ̸= s ∈ Jac(R). Let us assume that rannR(r) = tR.
If r = sv then clearly rannR(s) = v · rannR(r) = vtR. Otherwise s = rw,
hence writing t = wt′ we obtain rannR(s) = t′R. 2

Over a uniserial ring R by [5, Theorem 9.19] every finitely presented
module is a finite direct sum of uniserial modules R/riR, ri ∈ R and this
decomposition is unique.

We say that a uniserial ring R is nearly simple if Jac(R) is the unique
nontrivial twosided ideal of R and R is not artinian. Equivalently, a uniserial
ring R is nearly simple if and only if Jac(R) is the unique nontrivial twosided
ideal of R and Jac2(R) ̸= 0. A uniserial ring R is exceptional if R is nearly
simple, prime and contains zero divisors. If R is a uniserial ring then the
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set of right (left) zero divisors coincides with right (left) singular ideal of R,
in particular it is a twosided ideal of R.

A moduleMR is said to be right p-injective ifM is injective with respect
to the embeddings rR ⊆ RR, r ∈ R. Also MR is right fp-injective if M is
injective with respect to the embeddings of right modules F ⊆ Rn, where F
is finitely generated. The ring R is right p-injective (right fp-injective) if RR

is p-injective (fp-injective). Over a uniserial ring every p-injective module
is fp-injective.

Lemma 2.2 Let R be an exceptional uniserial ring. Then every r ∈ Jac(R)
is a right and left zero divisor. Thus R is left and right fp–injective, in par-
ticular ann2(rR) = rR and ann2(Rr) = Rr for every r ∈ R. If additionally
R is right coherent then it is left coherent.

Proof. Since R contains zero divisors, the right singular ideal of R coin-
cides with Jac(R), and similarly on the left. Since Jac(R) is the right and
left singular ideal of R, it follows that R is right and left fp–injective by
[13, Theorem 2.1]. The final equalities hold in every p-injective ring by [8,
Lemma 1.1].

For left coherence let 0 ̸= s ∈ Jac(R) and rannR(s) = tR. Then
lannR(t) = Rs by the double annihilator condition, hence R is left coherent
by Remark 2.1. 2

Now we recall some notions from the model theory of modules. For more
information the reader is referred to M. Prest’s book [9]. All facts from the
model theory of modules over a uniserial ring cited below can be found in
[4] and [12].

A pp-formula (in one free variable) φ(x) over a ring R is a formula
∃ ȳ = (y1, . . . , yn) ȳA = x(b1, . . . , bk) where A is an n× k matrix over R and
bi ∈ R. For an element m of a module M we say that φ is satisfied by m in
M , writtenM |= φ(m), if there is a tuple m = (m1, . . . ,mn) inM such that
mA = m(b1, . . . , bk). Clearly φ(M) = {m ∈ M | M |= φ(m)} is a subgroup
in M called a pp-subgroup, and φ(M) is even a left S-submodule of M for
S = End(M).

A divisibility formula is a pp-formula a | x, where a ∈ R and an an-
nihilator formula is a pp-formula xb = 0, where b ∈ R. For instance
(a | x)(M) =Ma and (xb = 0)(M) = annM (b) for every module M . Over a
uniserial ring divisibility formulae form a chain and the same is true for an-
nihilator formulae. Also these chains generate the lattice of all pp-formulae
over a uniserial ring, in particular this lattice is distributive. So every pp-
formula φ(x) over a uniserial ring R is equivalent to a finite conjunction
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of pp-formulae ab | xb, a, b ∈ R and also to a finite sum of pp-formulae
c | x ∧ xd = 0, c, d ∈ R.

A pair (M,m) whereM is a module andm ∈M is called a free realization
of a pp-formula φ(x), if M |= φ(m) and for every pp-formula ψ(x), M |=
ψ(m) implies φ → ψ where the latter means that φ(N) ⊆ ψ(N) for every
module N . For instance the pair (R/bR, 1) is a free realization for xb = 0,
and (R/abR, a), ab ̸= 0 is a free realization for a | x ∧ xb = 0.

An inclusion of modules M ⊆ N is said to be pure if φ(M) = M ∩
φ(N) holds for every pp-formula φ(x). Over a uniserial ring for purity it
suffices to verify that Mr = M ∩ Nr for every r ∈ R. A module M is
pure injective if it is injective over pure embeddings. Over a uniserial ring
every indecomposable pure injective moduleM is uniserial as a module over
its endomorphism ring. In particular the lattice of pp-subgroups of M is a
chain, so M is pp-uniserial.

For every module M there exists a “minimal” pure injective module
PE(M) that containsM as a pure submodule. Over a uniserial ring a module
PE(M) is indecomposable if and only if M is pp-uniserial and connected.
The latter means that for every 0 ̸= m,n ∈M there is a pp-formula φ(x, y)
such that M |= φ(m,n) ∧ ¬φ(m, 0).

When we refer to a pair of pp-formulae (φ/ψ) we usually mean that
ψ → φ, otherwise we can replace it by the pair (φ/φ∧ψ). If ψ(M) ⊂ φ(M)
for a module M we say that M opens the pair (φ/ψ). The underlying
set for the Ziegler spectrum ZgR over a ring R is the set of isomorphism
types of indecomposable pure injective R-modules. A pair (φ/ψ) can be
also interpreted as the open set {M ∈ ZgR | M opens (φ/ψ)} and all such
sets form a basis for ZgR. Every basic open set in ZgR is quasi–compact.

If m is an element of a module M then the collection of pp-formulae
ppM (m) = {φ(x) | M |= φ(m)} is called a pp-type. For every pp-type
p there exists a “minimal” pure injective module N(p) realizing p. For
instance if M is an indecomposable pure injective module, 0 ̸= m ∈M and
p = ppM (m), then N(p) ∼= M . A pp-type p(x) is called indecomposable if
the module N(p) is indecomposable. Over a uniserial ring R a pp-type p is
indecomposable if and only if for every a, b ∈ R, ab | xb ∈ p implies either
a | x ∈ p or xb = 0 ∈ p.

An epimorphism of modules f : M → N is pure if φ(M) = f−1(φ(N))
holds for every pp-formula φ(x). A module M is pure projective if M is
projective with respect to pure epimorphisms. Over an arbitrary ring a
module is pure projective if and only if it is a direct summand of a direct
sum of finitely presented modules. So a module M over a uniserial ring R is
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pure projective if and only if M is a direct summand of a module ⊕iR/riR,
ri ∈ R. Over any ring a factor of a pure projective module by a finitely
generated submodule is pure projective. Also every finite tuple of elements
of a pure projective module M realizes in M a pp-type p generated by a
single pp-formula (we say p is finitely generated).

The following fact shows that the converse is also true, at least for count-
ably generated modules.

Fact 2.3 [7, Theorem 3.1 + Proposition 2.10] Let M be a countably gen-
erated module such that the pp-type of every finite tuple m ∈ M is finitely
generated. Then M is pure projective.

3 Pure injective modules

It is well known (see [6, p. 535]) that for a ring R the module PE(RR) is
indecomposable if and only if R is local. For instance for every uniserial ring
R the module PE(RR) is indecomposable. There is another way to express
this in our particular situation.

Corollary 3.1 Let R be an exceptional uniserial ring. Then PE(RR) is an
indecomposable injective module.

Proof. By Lemma 2.2, the module RR is fp–injective. Since PE(RR) =
N(p) for p = ppR(1), we have PE(RR) = E(RR). Since RR is a uniserial
module, E(RR) is indecomposable. 2

There is a counterpart to this result.

Lemma 3.2 Let R be an exceptional uniserial ring and 0 ̸= r ∈ Jac(R).
Then PE(rR) is a decomposable module.

Proof. It suffices to check that rR is not pp–uniserial. By Lemma 2.2, rt =
0 for some 0 ̸= t ∈ R. Since R is prime, r Jac(R)t ̸= 0, and hence rst ̸= 0
for some 0 ̸= s ∈ Jac(R). Then rs ∈ (s | x)(rR) and rs /∈ (xt = 0)(rR).
Also clearly r ∈ (xt = 0)(rR) and r /∈ (s | x)(rR). Thus the pp-subgroups
(s | x)(rR) and (xt = 0)(rR) are incomparable. 2

In the following claim we use the fact that every indecomposable pure
injective module over a uniserial ring is pp-uniserial.

Lemma 3.3 Let R be an exceptional uniserial ring, 0 ̸= a ∈ Jac(R) and
b, c ∈ R such that cb ̸= 0. Then a | x ∧ xb = 0 → c | x.
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Proof. Assuming the contrary we obtain that the pair (a | x∧xb = 0/c | x)
is open on some indecomposable pure injective R-module M . If M is not
faithful then M ∼= F = R/ Jac(R), hence Ma = 0, a contradiction. Thus M
is faithful, so Mcb ̸= 0 implies that Mc is not a subset of annM (b). Since
M is pp-uniserial, annM (b) ⊂Mc, also a contradiction. 2

There is an important consequence of this result.

Lemma 3.4 Let R be an exceptional uniserial ring. Then PE(Jac(R)R) is
indecomposable and not fp-injective.

Proof. Again it suffices to prove that Jac(R) is pp-uniserial. We know that
the lattice of all pp-formulae over a uniserial ring is generated by divisibility
formulae a | x, a ∈ R and annihilator formulae xb = 0, b ∈ R. Also clearly
a | x→ xb = 0 if and only if ab = 0.

Thus it is enough to prove that (xb = 0)(Jac(R)) ⊆ Jac(R)a for every
0 ̸= a, b ∈ Jac(R) such that ab ̸= 0. Let 0 ̸= t ∈ Jac(R) be such that
tb = 0. Since Jac(R) is not principal as a left ideal, t = t′j for some
0 ̸= t′, j ∈ Jac(R). Thus the formula j | x ∧ xb = 0 is satisfied by t in
Jac(R). Since ab ̸= 0, Lemma 3.3 yields that a | x is true on t in Jac(R),
hence t ∈ Jac(R)a.

Thus PE(Jac(R)R) is an indecomposable module. Also for arbitrary
0 ̸= j ∈ Jac(R) we have that j /∈ Jac(R)j, but j ∈ Rj, hence Jac(R) is not
fp–injective. 2

Note that all nontrivial indecomposable finitely presented modules over
an exceptional uniserial ring are isomorphic.

Remark 3.5 Let R be an exceptional uniserial ring. Then all modules of
the form R/rR, 0 ̸= r ∈ Jac(R) are isomorphic.

Proof. Since R is nearly simple, the result follows by [11, Corollary 4.3].
2

The following is a description of the indecomposable pure injective mod-
ules over an exceptional uniserial ring.

Proposition 3.6 Let M be an indecomposable pure injective module over
an exceptional uniserial ring R. Then exactly one of the following is the
case:

1) M is indecomposable injective, hence M ∼= E(R/I) for some right
ideal I of R;

2) M ∼= PE((Jac(R))R) is not fp-injective;
3) M ∼= F = R/ Jac(R) is Σ-pure injective.
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Proof. If M is not faithful, then, since R is nearly simple, M is an F =
R/ Jac(R)-module, hence M ∼= F . Clearly M is Σ-pure injective over F ,
hence over R.

Otherwise M is faithful. If M is injective, then clearly M ∼= E(R/I) for
some right ideal I of R. Also since R/I is a uniserial module, its injective
envelope is indecomposable.

Thus we may assume that M is faithful and not injective. Let 0 ̸= m ∈
M , p = ppM (m), I = annR(m) and J = {s ∈ R | m /∈ Ms}. Then I is a
right ideal and J is a left ideal of R.

By the representation theorem (see [12, Theorem 17.17]), p is realized as
the pp-type of some element t in a (faithful) right ideal T of R (in fact since
R is prime, every nonzero right ideal of R is faithful), in particular I ̸= 0.
If T = tR, then by Lemma 3.2, p is decomposable, a contradiction. Thus
tR ⊂ T , hence g | x ∈ p for some 0 ̸= g ∈ Jac(R). Thus for every i ∈ I we
have g | x ∧ xi = 0 ∈ p.

Let q = ppE(T )(t), hence p ⊆ q. If p = q then M is a direct summand
of E(T ), hence injective, a contradiction. Otherwise a | x ∈ q \ p for some
a ∈ R. (We use here that if p is indecomposable then ab | xb ∈ p implies
either a | x ∈ p or xb = 0 ∈ p). Since a | x ∈ q, we have rannR(a) ⊆ I. Also
since a | x /∈ p, Lemma 3.3 yields ai = 0 for every i ∈ I, hence aI = 0. Thus
rannR(a) = I.

We prove that J = Ra. Clearly a ∈ J . If J ̸= Ra we get a′ ∈ J for
some a′ ∈ R such that a ∈ Jac(R)a′. Then rannR(a

′) ⊆ I hence as above we
obtain rannR(a

′) = I. Then Lemma 2.2 implies Ra = Ra′, a contradiction.
Thus rannR(a) = I and Ra = {s ∈ R | a /∈ Jac(R)s} = J . Moreover the

pp-type r = ppJac(R)(a) is indecomposable by Lemma 3.4. Thus p coincides
with r on divisibility and annihilator formulae. Since p is indecomposable,
p = r. Also the module PE(Jac(R)) is indecomposable, therefore M ∼=
PE(Jac(R)). 2

4 The lattice of pp-formulae

We remark that for a, b ∈ R with ab = 0 we obviously have a | x→ xb = 0,
hence the formula a | x ∧ xb = 0 is equivalent to the formula a | x. We will
treat this case as trivial. The following claims will show that each nontrivial
formula a | x ∧ xb = 0 defines a proper section on the chain of divisibily
formulae and also all such formulae are ordered into a chain by annihilator
conditions.
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Lemma 4.1 Let a, b ∈ Jac(R) be such that ab ̸= 0 and c ∈ R. Then
c | x → a | x ∧ xb = 0 iff cb = 0 and then this implication is proper.
Otherwise a | x ∧ xb = 0 → c | x and that is also a proper implication.

Proof. Since ab ̸= 0, we have Ra ∩ lannR(b) = lannR(b).
So, if cb = 0, then c ∈ Ra. Thus c | x→ xb = 0 and c | x→ a | x, hence

c | x→ a | x ∧ xb = 0.
If cb ̸= 0, then a | x ∧ xb = 0 → c | x by Lemma 3.3.
Now the conclusion is evident. 2

Lemma 4.2 Let a, b, a′, b′ ∈ Jac(R) where ab, a′b′ ̸= 0. Then a | x ∧ xb =
0 → a′ | x ∧ xb′ = 0 iff b′ ∈ bR. For instance if b′ ∈ b Jac(R) then this
implication is proper.

Proof. Let us assume that b′ ∈ bR. Then xb = 0 → xb′ = 0, hence
a | x ∧ xb = 0 → xb′ = 0. If a | x ∧ xb = 0 → a′ | x were not true,
then Lemma 4.1 would give a′b = 0, hence a′b′ = 0, a contradiction. Thus
a | x ∧ xb = 0 → a′ | x which clearly yields a | x ∧ xb = 0 → a′ | x ∧ xb′ = 0.

Also suppose that b′ ∈ b Jac(R) and a′ | x ∧ xb′ = 0 → a | x ∧ xb = 0.
Then a′ | x ∧ xb′ = 0 → xb = 0. But in the module (R/a′b′R, a′) we clearly
have a′b ̸= 0, a contradiction. 2

Now by elementary duality we immediately obtain that the formula xa =
0+b | x, ba ̸= 0 defines a proper section on the chain of annihilator formulae
and all such formulae are linearly ordered by the divisibility condition.

Corollary 4.3 Let a, b ∈ Jac(R) be such that ba ̸= 0. Then xc = 0 →
xa = 0 + b | x iff bc ̸= 0 and then this implication is proper. Otherwise
xa = 0 + b | x → xc = 0 and then that is also a proper implication. Also if
a′, b′ ∈ Jac(R) with b′a′ ̸= 0 then (xa = 0 + b | x) → (xa′ = 0 + b′ | x) iff
b ∈ Rb′ and this implication is proper if b ∈ Jac(R)b′.

This leads to a complete description of lattice of all pp-formulae over an
exceptional uniserial ring.

Proposition 4.4 Let R be an exceptional uniserial ring. Then the lattice of
all pp-formulae over R is as shown in Figure 1, where 0 ̸= a, b, c, d ∈ Jac(R),
ad = 0, c ∈ Ra, cb ̸= 0.

Proof. By Lemma 3.3 and Corollary 4.3, we have two chains in the lattice
of all pp-formulae over R that include the set of generators for this lattice.
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x = 0

x = x

a | x

c | x

a | x ∧ xb = 0

xb = 0

ab | xb

xd = 0

Figure 1:

So it suffices to show that the sum and the intersection of elements from
different chains lie in one of those. By elementary duality and symmetry it
is enough to consider the case (a | x∧ xb = 0)+ xb′ = 0 for a, b, b′ ∈ Jac(R),
ab ̸= 0, b′ /∈ bR. By modularity we transform this formula to (a | x+ xb′ =
0) ∧ xb = 0. Since ab ̸= 0 by Corollary 4.3 this formula is equivalent to
xb = 0. 2

Over an exceptional uniserial coherent ring flatness is the same as fp-
injectivity.

Corollary 4.5 Over an exceptional uniserial coherent ring R every fp-injec-
tive module is flat and every flat module is fp-injective. Also Jac(R) is
neither flat nor fp-injective.

Proof. Every fp-injective R-module is flat and every flat R-module is fp-
injective by [14, 48.8].

Since Jac(R)R is not fp-injective, it is not flat. 2

Now we investigate isolated points in the Ziegler spectrum over an ex-
ceptional uniserial coherent ring.

Lemma 4.6 Let R be an exceptional uniserial coherent ring. Then F and
PE(Jac(RR)) are the only isolated points in ZgR. Also Zg′R consists only
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a | x

a′ | x

a′ | x ∧ xb = 0

ab′ | xb′

xb′ = 0

xb = 0

Figure 2:

of injective flat points and contains no isolated point. Thus the Cantor–
Bendixson rank of ZgR is undefined.

Proof. Let 0 ̸= a ∈ Jac(R), rannR(a) = bR and let a′, b′ ∈ Jac(R) be such
that b ∈ b′ Jac(R), a ∈ Jac(R)a′. Then (see Figure 2) we obtain a quadruple
in the lattice of pp-formulae over R each side of which is a minimal pair of
pp-formulae. In particular a pair (xb = 0/a′ | x∧ xb = 0) isolates F as does
the perspective minimal pair (ab′ | xb′/a | x). The pair (xb = 0/ab′ | xb′)
and also the pair (a′ | x ∧ xb = 0/a | x) isolate PE(Jac(R)).

Suppose that there exists a point in Zg′R that is isolated by a pair
(φ/ψ). In any injective module M by [10, Proposition 1.3] we have φ(M) =
annM (Dφ(RR)) where we use D for the dual pp-formula. Since R is co-
herent, Dφ(RR) = aR for some a ∈ R, thus φ is equivalent in the theory
of injective modules to xa = 0. Similary ψ is equivalent to xb = 0, hence
0 ̸= a = bc for c ∈ Jac(R).

But both modules (E(R/aR), 1) and (E(R/b Jac(R)), 1) open this pair.
Clearly they are nonisomorphic, a contradiction. 2

As we have seen during this proof, the lattice of pp-formulae over an
exceptional uniserial coherent ring consists of quadruples that form a dense
linear order.

Now we consider the pure injective envelope of a module R/rR, 0 ̸=
r ∈ Jac(R). If lannR(r) = Rs then sR ∼= R/rR, hence by Lemma 3.2,
PE(R/rR) is a decomposable module. We point out the exact form of this
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decomposition.

Lemma 4.7 Let R be an exceptional uniserial coherent ring and let 0 ̸=
r ∈ Jac(R). Then PE(R/rR) ∼= PE(Jac(R)R)⊕ F .

Proof. Let lannR(r) = Rs for s ∈ R, hence rannR(s) = rR. We define an
embedding f : M = R/rR → Jac(R) ⊕ F = N by the rule f(1) → (s, 1).
Let us verify that this embedding is pure, where it suffices to check only the
divisibility conditions. Clearly for every 0 ̸= s ∈ Jac(R) we have 1 /∈ Ms
and also f(1) = (s, 1) /∈ Ns = (Jac(R)s, 0).

So let m ∈ M be the image of some 0 ̸= j ∈ Jac(R) such that t divides
f(j) = (sj, 0) in N , hence t divides sj in Jac(R). Then t /∈ Rsj. We write
r = jh for 0 ̸= h ∈ Jac(R). Thus the formula j | x ∧ xh = 0 is satisfied by
m in M . Letting m /∈ Mt, by Lemma 4.1 we get th = 0. But 0 = sr = sjh
clearly implies lannR(h) = Rsj, hence t ∈ Rsj, a contradiction. 2

Corollary 4.8 Let R be an exceptional uniserial coherent ring, 0 ̸= r ∈
Jac(R) and S = End(R/rR). Then S has exactly two maximal right (left,
twosided) ideals: K consisting of non epimorphisms and L consisting of non
monomorphisms.

Proof. Since R/rR is finitely presented and PE(R/rR) is decomposable,
S is not a local ring. Thus by [5, Theorem 9.1] S has exactly two maximal
right (left, twosided) ideals of the prescribed form. 2

5 Pure projective modules

In this section we begin an investigation of pure projective modules over an
exceptional uniserial ring R. Everywhere in the sequel we will assume that
R is an exceptional uniserial coherent ring. The reasons for such assumption
are twofold. The first is that the unique example of an exceptional uniserial
ring known to us is Dubrovin’s example and this is coherent (see proof
below). The other is that if an exceptional uniserial noncoherent ring were
to exist, the theory of pure projectives over it would look very similar to
that over a nearly simple uniserial domain.

Lemma 5.1 Let R be an exceptional uniserial ring constructed in [2, The-
orem 2.5]. Then R is coherent.
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Proof. A basis for Dubrovin’s example is given by a special right ordering
on a trefoil group G to which he associated a uniserial domain R′ (see [2]
for precise definitions). One takes g in the center of G, hence the right ideal
I = gR′ is two sided and one puts R = R′/I. By Remark 2.1 for coherence it
suffices to check that rannR(r) is principal for some 0 ̸= r ∈ Jac(R). Clearly
we can take r = g′ ∈ G, hence rannR(r) = (g′−1g)R. 2

Let us make first a quite trivial remark.

Remark 5.2 For every uniserial ring R and 0 ̸= r ∈ Jac(R), the module
R/rR is coherent. Hence every pure projective module over an exceptional
uniserial coherent ring is locally coherent.

Proof. Indeed it suffices to prove that every nonzero finitely generated sub-
module N of M = R/rR is finitely presented. Since N is finitely generated
it is cyclic, say N = sR for 0 ̸= s ∈ R. Then r = st for 0 ̸= t ∈ R. It is
evident that N ∼= R/tR.

If R is an exceptional uniserial coherent ring, then every pure projective
R-module is locally coherent, being a direct summand of the locally coherent
module R(α) ⊕ (R/rR)(β). 2

Recall that for every 0 ̸= r ∈ Jac(R) the endomorphism ring S =
End(R/rR) contains exactly two maximal right (left, twosided) ideals K
and L. Then Jac(S) = K ∩ L and S/ Jac(S) is a sum of two skew fields
S/K ⊕ S/L. The following is the first structure result for pure projectives
over R.

Lemma 5.3 Let M be the pure projective module over an exceptional unis-
erial coherent ring R. Then there is a decomposition M = T ⊕ U such
that either 1) T ∼= R(α) and U has no direct summand isomorphic to RR

or 2) T ∼= (R/rR)(β) for some (any) 0 ̸= r ∈ Jac(R) and U has no direct
summand isomorphic to R/rR.

Proof. Let N = R⊕ (R/rR) and set S′ = End(N). Clearly

S′ =

(
R Hom(R/rR,R)

R/rR End(R/rR)

)
,

where we use the identification Hom(R,R/rR) = R/rR. Since every f ∈
Hom(R,R/rR) is not mono and every g ∈ Hom(R/rR,R) is not epi, there-
fore e1Se2Se1 ⊆ Jac(R) and e2Se1Se2 ⊆ K∩L = Jac(S). Thus the maximal
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right (left, twosided) ideals of S′ are the following:

J ′ =

(
Jac(R) Hom(R/rR,R)
R/rR End(R/rR)

)
K ′ =

(
R Hom(R/rR,R)

R/rR K

)

and

L′ =

(
R Hom(R/rR,R)

R/rR L

)
.

Since N is finitely generated, by [5, Proposition 3.12], Hom(N,−) de-
fines a 1-1 correspondence between direct summands of N (γ) (hence pure
projective right R-modules) and projective right modules over S′. Via this
correspondence R goes to e1S

′ and R/rR to e2S
′. Let P be a projective S′-

module that corresponds to a pure projective R-moduleM . By Kaplansky’s
theorem we may assume that P is countably generated.

As in [3, Proposition 2.9] if P/PJ ′, P/PK ′ and P/PL′ are infinite di-
mensional vector spaces (over the corresponding skew fields S′/J ′, S′/K ′

and S′/L′), then by Bass’s theorem P is free, hence M = T ⊕ U where
T ∼= R(α) and U ∼= (R/rR)(β).

Also if P/PJ ′ is finite dimensional, we can split off finitely many copies
of R in M , hence M = Rn ⊕U where U contains no copies of R as a direct
summand. Similarly if one of P/PK ′ and P/PL′ is finite dimensional, then
there is a decomposition M = (R/rR)m ⊕ U where U contains no copies of
R/rR as a direct summand (see [3, proof of prop. 2.9] for all of this). 2

It is evident that the pp-formula a | x has (R, a) as a free realization.
Hence if a module M has RR as a direct summand, the pp-type ppM (a) is
generated by a | x. The converse is also true in our case, as the next lemma
shows.

Lemma 5.4 Let M be a pure projective module over an exceptional unise-
rial ring R. Let m,n ∈M be such that na = m, 0 ̸= a ∈ R and the pp-type
p = ppM (m) is generated by a | x. Then nR ∼= RR is a direct summand of
M .

Proof. Clearly that nR ∼= RR via n→ 1. Since R is fp-injective, nR is pure
in M . Thus nR is a direct summand of M , being a pure finitely generated
submodule of a pure projective module. 2

Almost the same is true for a realization of a formula ab | xb = a |
x+ xb = 0.
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Lemma 5.5 Let M be a pure projective module over an exceptional unise-
rial ring R, let 0 ̸= m ∈M and set p = ppM (m). If p is generated by either
a pp-formula a | x for some 0 ̸= a ∈ R or by ab | xb for some a, b ∈ Jac(R)
with ab ̸= 0, then M has a direct summand isomorphic to R.

Proof. If p is generated by a | x, the result follows by Lemma 5.4.
Let us assume that p is generated by ab | xb. In particular (since ab | xb

implies neither a | x nor xb = 0), m /∈ Ma and mb ̸= 0. Let n ∈ M be
such that nab = mb, hence (m − na)b = 0 and m = (m − na) + na. We
assert that the pp-type q = ppM (na) is generated by a | x. Indeed clearly
a | x ∈ q. Let φ ∈ q for some pp-formula φ that is not implied by a | x.
Then (see Figure 1) φ+(xb = 0) is strictly less than ab | xb, a contradiction.
So a | x generates q in this case, hence M contains R as a direct summand
by Lemma 5.4 again. 2

Now we find some examples of pure projective modules.

Lemma 5.6 LetM be a countably generated locally coherent module over an
exceptional uniserial coherent ring such that RR is not a (pure) submodule
of M . Then M is pure projective.

Proof. By Fact 2.3, it suffices to verify that every finite tuple from M real-
izes a finitely generated pp-type. Let N be the submodule of M generated
by this tuple. Choose a new system of generatorsm1, . . . ,mk forN such that
the number of mi /∈ M Jac(R) is minimal. So let m1, . . . ,ml /∈ M Jac(R)
and mj = njsj , j > l for nj ∈M , sj ∈ Jac(R). Let N ′ be the submodule of
M generated by m1, . . . ,ml, nl+1, . . . , nk. We prove that every finite tuple
from N (in particular our original tuple) realizes in N ′ and M the same
pp-type. This will be enough, since N ′ is a finitely generated submodule of
a locally coherent module and hence N ′ is finitely presented.

Otherwise (since every pp-formula φ(x1, . . . , xk) over a uniserial ring is
equivalent to a conjunction of pp-formulae s | xt1 + . . . + xtk) 0 ̸= m =
m1t1 + . . . + mktk ∈ Ms \ N ′s for some 0 ̸= s ∈ Jac(R). Suppose that
ti /∈ Jac(R) for some i ≤ l. We may assume that t1 = 1 /∈ Jac(R). Then
m,m2, . . . ,mk is a new system of generators for N and m ∈ M Jac(R),
a contradiction. Thus ti ∈ Jac(R) for every i ≤ l and mj ∈ N ′ Jac(R)
for j > l, hence m ∈ N ′t for some 0 ̸= t ∈ Jac(R). Since mR is not
isomorphic to RR, we have annR(m) = rR for some 0 ̸= r ∈ Jac(R). Thus
t | x ∧ xr = 0 ∈ ppN ′(m). Since m /∈ N ′s, we have sr = 0 by Lemma 3.3. If
ns = m for n ∈M then clearly nR ∼= RR, a contradiction. 2
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The following corollary shows in particular that every countably gener-
ated uniserial locally coherent module over an exceptional uniserial coherent
ring is pure projective.

Corollary 5.7 Let M be a countably generated locally coherent module over
an exceptional uniserial coherent ring such that M = M Jac(R). Then M
is pure projective.

Proof. Clearly RR is not a submodule of M , hence M is pure projective
by Lemma 5.6. 2

Now we prove that there exists a unique uniserial countably generated
pure projective module over an exceptional uniserial coherent ring.

Lemma 5.8 LetM,N be countably generated locally coherent uniserial mod-
ules over an exceptional uniserial coherent ring. Then M ∼= N and M,N
are pure projective. In particular if Jac(R) is countably generated, then
M ∼= Jac(R).

Proof. M,N are pure projective by Lemma 5.6. We will construct an
isomorphism from M to N using a back and forth construction. Indeed
let f : M0 = m0R → N0 = n0R be an isomorphism of finitely generated
submodules of M and N such that f(m0) = n0. We should extend f to
arbitrarym ∈M . SinceM is locally coherent, we may assume thatms = m0

for 0 ̸= s ∈ Jac(R) and also sR = {r ∈ R | mr ∈ M0}. So s | m0 and if
annR(m0) = rR then sr ̸= 0 (otherwise rannR(s) = rR and mR ∼= R is a
pure submodule in M , a contradiction).

Also since N = N Jac(R), there is 0 ̸= t ∈ Jac(R) such that n0 ∈ Nt.
By Lemma 3.3 it follows that s | n0 in N , hence n0 = ns for some n ∈ N .
Then f(m) = n gives the required extension.

Thus M ∼= N . Also Jac(R) is locally coherent and uniserial. If it is
countably generated, then M ∼= Jac(R). 2

We will denote the unique uniserial countably generated pure projective
R-module by V . For instance any countably generated not finitely generated
right ideal of R is isomorphic to V .

Now we are ready to classify pure projective modules without projective
direct summands.

Lemma 5.9 Let M be a pure projective module over an exceptional unis-
erial coherent ring such that RR is not a direct summand of M . Then
M ∼= (R/rR)(β) ⊕ V (γ).
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Proof. By Kaplansky’s theorem we may assume that M is countably gen-
erated.

By Lemma 5.5, every 0 ̸= m ∈M realizes a pp-type generated by either
xr = 0, 0 ̸= r ∈ Jac(R) or by a | x ∧ xb = 0, a, b ∈ Jac(R), ab ̸= 0. Let us
represent M as a union M0 ⊂M1 ⊂ . . . of finitely generated (hence finitely
presented) submodules.

We prove that every 0 ̸= m ∈ M is contained in a direct summand
isomorphic to either R/rR or V . If ppM (m) is generated by xr = 0, 0 ̸=
r ∈ Jac(R), then mR ∼= R/rR is a direct summand. Otherwise ppM (m) is
generated by a | x ∧ xb = 0 as above, in particular m0 = m = na for some
n ∈ M . Let N = nR +M0 be decomposed as N = (R/rR)n. Then there
are n′ ∈ N , 0 ̸= s ∈ R such that n′s′ = m0 and n′ /∈ N Jac(R). Again if
ppM (n′) is generated by xt = 0, we are done. Otherwise write n′ = m1t for
some t ∈ Jac(R), then m0 = m1ts

′ and clearly m1 /∈M0.
Following this either we find a direct summand R/rR inM containingm,

or we construct a sequencem = m0,m1, . . . ∈M such that 1)mi+1ri+1 = mi

for 0 ̸= ri+1 ∈ Jac(R) and 2) mi+1 /∈Mi.
Let V be generated by m0,m1, . . .. We prove that V is pure in M .

Otherwise for some 0 ̸= n ∈ V , 0 ̸= s ∈ Jac(R) we have n ∈Ms \ V s. Since
V is uniserial and countably generated, we have n ∈ V a for some 0 ̸= a ∈
Jac(R) and also nb = 0 for 0 ̸= b ∈ Jac(R). Then a | x ∧ xb = 0 ∈ ppV (n),
hence sb = 0 by Lemma 3.3. Then for n′s = n we obtain n′R ∼= RR, a
contradiction.

Let us show that M/V is locally coherent. Let T ′ ⊆ M/V be finitely
generated. Then T ′ is an image of a finitely generated submodule T ⊂ M ,
hence T ′ ∼= T/T ∩ V . If V ⊆ T , then V ⊆ Mi for some i, a contradiction.
Otherwise T ∩V ⊂ V , hence T ∩V = T ∩miR for some i, and this is finitely
generated (being the intersection of two finitely generated submodules of a
locally coherent module). Thus T ′ is finitely presented.

If mR ∼= R ⊆M/V , it is a preimage of a copy R in M , a contradiction.
Thus by Lemma 5.6 M/V is pure projective, hence M ∼= V ⊕M/V . 2

Corollary 5.10 Let M be a countably generated locally coherent module
over an exceptional uniserial coherent ring such that M = Jac(M). Then M
is pure projective and M ∼= V (γ) for the unique uniserial countably generated
locally coherent module V .
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6 An example

First let us prove a technical claim.

Lemma 6.1 Let M be a pure projective module over an exceptional unise-
rial coherent ring R. Let the pp-type p = ppM (m) for 0 ̸= m ∈ M be gen-
erated by a pp-formula ab′ | xb′ for some a, b′ ∈ Jac(R), ab′ ̸= 0. Then for
every s ∈ R the pp-type of n = ms in M is finitely generated. If s ∈ Jac(R)
then ppM (n) is generated by t | x, t ∈ R.

Proof. Let q(y) = ppM (n). If s is invertible in R then clearly q(y) is
generated by ab′ | ys−1b′. So we may assume that 0 ̸= s ∈ Jac(R).

Let rannR(a) = bR. Then (see Figure 2) a | x + xb′ = 0 → xb = 0, in
particular b ∈ b′ Jac(R). So if s ∈ bR then n = 0 whose pp-type is generated
by x = 0.

Let s /∈ b′R. Suppose that b′ = st for some t ∈ R. Then ab′ | mb′ i.e.
ast | nt implies that ast | yt ∈ q(y) and also s | y ∈ q(y). Thus ast | yt ∧ s |
y ∈ q(y) which is equivalent (see Figure 1) to as | y. Also we prove that
rannR(n) = rannR(as). Indeed clearly rannR(as) ⊆ annR(n). Suppose that
nh = 0 for some h ∈ R, hence msh = 0. Then ab′ | xb′ → xsh = 0, hence
ash = 0 by Corollary 4.3. If n′ ∈M be such that n′as = n, then n′R ∼= RR,
hence n is included in a direct summand of M isomorphic to RR and the
pp-type of n is generated by as | y.

Now suppose that s ∈ b′R \ bR, say s = b′t for t ∈ R. If m′ ∈ M is
such that m′ab′ = mb′ then m′ab′t = mb′t = ms = n, hence ab′t | y ∈ q(y).
Similarly it can be proved that annR(n) = rannR(ab

′t) hence m′R ∼= RR is
a direct summand. Indeed clearly rannR(ab

′t) ⊆ annR(n). If nh = 0 then
mb′th = nh = 0, hence ab′th = 0 by Corollary 4.3 again, which is as desired.
2

Now we give an example of a bad pure projective module over an excep-
tional uniserial coherent ring.

Proposition 6.2 Let R be an exceptional uniserial coherent ring. Then
there exists a pure projective module W over R such that W is not a direct
sum of indecomposable modules.

Proof. Let 0 ̸= bi ∈ Jac(R) for i ≥ 0 be such that bi ∈ bi+1 Jac(R) and
lannR(bi) = Rai+1 for 0 ̸= ai ∈ Jac(R). Clearly that ai+1 ∈ Jac(R)ai and
rannR(ai+1) = biR. Hence the implication aibi | xbi → xbi−1 = 0 is proper
and the pair (xbi−1 = 0/aibi | xbi) is minimal (see Figure 3).
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•

xb2 = 0

xb1 = 0

xb0 = 0

a3b3 | xb3
a2b2 | xb2

a1b1 | xb1

a3 | x
a2 | x

a1 | x

Figure 3:

Let M0 = R/b0R and m0 = 1. Then (M0,m0) is a free realization
of the pp-formula xb0 = 0. Let M1 = R ⊕ R/b1R and m1 = (0, 1). We
define the map f0 : M0 → M1 by f0(1) = (a1, 1). Clearly (M1, f0(m0)) is a
free realization of a1b1 | xb1. Since there are no other annihilator formulas
between a1b1 | xb1 and xb0 = 0, this map is an embedding.

Similarly let M2 = R⊕R⊕R/b2R, m2 = (0, 0, 1) and let f1 :M1 →M2

be defined by f1(1, 0) = (1, 0, 0) and f1(m1) = f1(0, 1) = (0, a2, 1). Then
(M2, f1(m1)) is a free realization of a2b2 | xb2 in M2.

Also f1f0(m0) = (a1, a2, 1) has pp-type generated by a1 | x + a2 | x +
xb2 = 0 which is clearly equal to a1b1 | xb1.

Similarly let Mi = R i ⊕ R/biR, mi = (0̄, 1) and let fi : Mi → Mi+1 be
defined by f(r̄, 0) = (r̄, 0, 0) for r̄ ∈ R i and f(mi) = f(0̄, 1) = (0̄, ai+1, 1).
Clearly (see Figure 3) every fi is an embedding.

LetW = lim
→

(Mi, fi). As above it is not difficult to see thatmi = (0̄, 1) ∈

Mi realizes inW the pp-type generated by ai+1bi+1 | xbi+1. Indeed the image
of mi in Mi+1 is (0̄, ai+1, 1) which is a free realization of ai+1bi+1 | xbi+1.
Also the further image in Mi+2 is (0̄, ai+1, ai+2, 1) which is a free realization
of ai+1 | x + ai+2 | x + xbi+2 = 0 which is equal to ai+1bi+1 | xbi+1 and so
on.

We prove that there is no element m in W whose pp-type is generated
by xb = 0 for some 0 ̸= b ∈ Jac(R) or a | x ∧ xb = 0 for some a, b ∈ Jac(R),
with ab ̸= 0. Indeed let m = (r̄, s) ∈Mi = R i ⊕R/biR.

Then m = m1+m2 where m1 = (r̄, 0) and m2 = (0̄, s). Clearly ppW (m1)
is generated by a pp-formula t | x for some t ∈ R and if φ generates ppW (m2),
then p = ppM (m) is generated by t | x+ φ so we can not reach a forbidden
formula if φ is not such.
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So it suffices to prove that ppW (0, s) is not of this form. For s = 1 the
pp-type of m in M is generated by ai+1bi+1 | xbi+1 which is as desired and
for invertible s we can use Lemma 6.1. If s ∈ biR, then s = 0 in R/biR.
Suppose that s ∈ Jac(R)\ biR, then by Lemma 6.1 the pp-type of s in Mi+1

is generated by a pp-formula v | x, so the same is true in W .
We claim that W is pure projective. By Fact 2.3 it suffices to prove

that W is pp-atomic (i.e. realizes only finitely generated pp-types). In
fact we show that for any m = (m1, . . . ,mk) ∈ Mi we have ppW (m) =
ppMi+1(m). Since Mi+1 is finitely presented that will give the desired. So
let m = m1t1 + . . .+mntn ∈Mi and t | x in W but ¬ t | x in Mi+1 for some
0 ̸= t ∈ Jac(R). Let us write m = (r̄, s) for s ∈ R/biR. In particular, t | m
inW implies t | r̄ in R i, hence we can remove this component. If s ∈ Jac(R)
then by Lemma 6.1 the type of s in Mi is maximal, hence t | s in Mi+1, a
contradiction.

The remaining case is that s in invertible, and so we may assume that
s = 1. Then the pp-type of 1 inW andMi+1 is generated by ai+1bi+1 | xbi+1

which also yields the desired result. Thus W is pure projective.
Suppose thatW = ⊕i∈IMi whereMi are indecomposable pure projective

modules. By what has just been proved every pp-type realized in Mi is
generated by either s | x or by ab | xb for a, b ∈ Jac(R), ab ̸= 0. In both
cases by Lemma 5.5,Mi contains a direct summand isomorphic to RR, hence
Mi

∼= RR, and so M ∼= R(α). But then every m ∈M has pp-type generated
by s | x for some s ∈ R and we could not obtain, for example a1b1 | xb1, a
contradiction.

2

Facchini [5, Probl. 10] asked whether every direct summand of a serial
module is serial. Also let us cite the first question in [5, Probl. 11]: Is every
pure projective module over a serial ring serial? The following is a negative
answer to both these questions.

Theorem 6.3 Over an arbitrary exceptional uniserial coherent ring R there
exists a pure projective module W that is not a direct sum of indecomposable
modules.

Proof. This follows from Proposition 6.2. 2

We derive from this the following corollary.

Corollary 6.4 There exists a ring with exactly three maximal right (left,
twosided) ideals with a projective (countably generated) right module P such
that P is not a direct sum of indecomposable modules.
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Proof. Let R, W be as in Theorem 6.3, N = R⊕R/rR and S = End(N).
Then there is a correspondence between right pure projective modules over
R and projective right S-modules. The projective S-module P that corre-
sponds to W is as desired. 2

The author is indebted to M. Prest for helpful comments.
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