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Abstract. We prove that over every non-domestic string algebra over a

countable field there exists a superdecomposable pure-injective module.

1. Introduction

There is a well-known dichotomy for the behavior of a finite dimensional

algebra A over a field k. Roughly speaking A is tame if a description of

all finite dimensional A-modules is available, otherwise A is wild. This

definition can be made precise, and then Drozd’s theorem states (at least

for an algebraically closed k) that every finite dimensional algebra is either

tame or wild but not both.

Unfortunately, the usual definition of tameness and wildness refers to

some infinite dimensional A-modules (what Ringel [10] describes as an ‘ex-

ternal structure’) so it would be nice to find one appealing only to finite

dimensional representations. It has been conjectured by Prest [6, Ch. 13]

(see also [10, p. 38] and a discussion in [5, p. 219]) that A is tame if and

only if A does not posses a superdecomposable (i.e. without indecompos-

able direct summands) pure-injective module. This means just that every

direct product of indecomposable finite dimensional A-modules contains an

indecomposable direct summand.

In this paper we refute this conjecture by proving that over an arbitrary

non-domestic string algebra over a countable field there exists a superdecom-

posable pure-injective module. This class of algebras is well known to be

tame and includes among others the Gelfand–Ponomarev algebras as well
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as the dihedral algebras. So it seems now that the classification of pure-

injective modules over a non-domestic string algebra (just slightly touched

on by Baratella and Prest [1]) is a more challenging problem than previously

believed.

Is countability of k necessary in the above result? In fact, our main

result does not appeal to any countability assumption: we prove that the

lattice of all pp-formulae over any non-domestic string algebra does not have

width. But to extract a superdecomposable pure-injective module from this

we need an ingenious construction of Ziegler [12] that seems to work only if

k is countable.

Note that the existence of a superdecomposable pure-injective module

over a Gelfand–Ponomarev algebra was posed as a problem in Jensen and

Lenzing [5] (see Remark 8.72 and Problem 13.28). So we give a partial, i.e.

over a countable field, answer to this question. The reader may also consult

[5] to see how to construct a superdecomposable pure-injective module over

many (conjecturally all) wild finite dimensional algebras.

All the machinery used in the proofs is quite well known. Prest [7] was

the first to notice that over the dihedral (and many similar) algebras there

exists a densely ordered chain of morphisms between string modules. In

other words the lattice of all pp-formulae over these algebras does not have

m-dimension. This result (with a similar proof) was extended by Schröer

[11] to an arbitrary non-domestic string algebra.

It is also well known (see Ringel [8] for a detailed explanation) that over a

dihedral algebra there are two natural chains of proper morphisms between

indecomposable finite dimensional modules. All we have noticed is that

the (distributive) lattice generated by these two chains is generated freely,

therefore its width is undefined.

I am indebted to Mike Prest for his helpful suggestions and interest.

2. Preliminaries

Quite a few model theoretic terms, which appear in what follows, can

be found in [6]. Otherwise, as is explained in [7], one could always replace

the term ‘pp-formula’ by ‘pointed finitely presented module’, and the term

‘implication between pp-formulae’ by ‘morphism between pointed modules’.

All the modules in the sequel will be left modules.
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Let A be a finite dimensional algebra given by a quiver with monomial

relations. For an arrow α, we will denote by s(α) the starting point of α

and by e(α) the ending point of α. Also, for every arrow α, we consider

its formal inverse α−1 as an arrow going into an opposite direction. Thus

e(α−1) = s(α) and s(α−1) = e(α).

A is said to be a string algebra if the following holds true: 1) every vertex

is a starting point for at most two arrows and the ending point for at most

two arrows; 2) given an arrow α, there is at most one arrow β such that

e(β) = s(α), and the composition αβ is not a relation in A (i.e. nonzero in

A); 3) given an arrow α, there is at most one arrow γ such that e(α) = s(γ),

and the composition γα is not a relation in A.

For instance, the Gelfand–Ponomarev algebra Gn,m is the path algebra

of the quiver

◦α << βbb

with relations αn = βm = 0. It is well known thatGn,m is tame non-domestic

if m+ n ≥ 5.

Let A be a string algebra. A string C over A is a sequence c1 . . . cn with

the following properties: 1) for every i, either ci = α is a (direct) arrow, or

ci = α−1 is an inverse arrow; 2) s(ci) = e(ci+1) for every 1 ≤ i ≤ n − 1; 3)

ci ̸= c−1
i+1 for every 1 ≤ i ≤ n − 1; 4) neither ci . . . ci+t (direct arrows) nor

c−1
i+t . . . c

−1
i (inverse arrows) is a relation in A for 1 ≤ i ≤ i+ t ≤ n.

Given a string C = c1 . . . cn, we define a string module M(C) in the

following way. The k-basis forM(C) is given by vectors z0, . . . , zn. If ci = α

is direct, then set αzi = zi−1, and if ci = β−1 is inverse, then put βzi−1 = zi.

All the remaining actions are defined to be zero. Following [11] we draw

direct arrows from upper right to lower left and inverse arrows from upper

left to lower down.

For instance,

◦
β

����
��
� α

��3
33

33

◦
β

����
��
� α

��3
33

33 ◦
β����

��
� ◦

◦ ◦

is a string module over G2,3 corresponding to the string βα−1β2α−1.

By [2] all string modules over a string algebra are indecomposable.
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Let C = c1 . . . cn, n ≥ 1 be a string. What are the possible ways to extend

this string to a string c1 . . . cncn+1? Suppose that cn is a direct letter α. If

cn+1 is a direct letter β, then β ends in the vertex where α starts. Since αβ

is a string, there is only one possibility for β (such that αβ is not a relation

in A). On the other hand, if cn+1 is an inverse letter γ−1, then α and γ

start at the same vertex (and α ̸= γ since Ccn+1 is a string). Since there

are at most two arrows starting in the given vertex, γ is uniquely defined.

Moreover, if both β and γ are defined, then αβ ̸= 0 implies γβ = 0.

Now we define a (linear) order < on the set of strings with the same first

(direct) letter. For strings B and C we put B < C if one of the following

holds true 1) Bγ−1D = C for some γ,D; 2) B = CβE for some β,E; or 3)

B = B′βF , C = B′γ−1G for some B′, F, γ and G. Thus, to compare two

strings we look at their common initial part (by assumption, there is at least

one letter in this part), and compare letters following this part.

Note that, if B < C by 1), then B < CS for arbitrary S (such that CS

is a string). Similarly, if B < C by 2), then BT < C for any T . Finally, if

B < C by 3), then BU < CV for all U and V .

Lemma 2.1. Let B < C be strings with first letter α, and let M(B), M(C)

be the corresponding string modules. Then there exists a (canonical) mor-

phism f : M(C) → M(B) such that f(z0) = z0. Moreover, every such

morphism is proper, meaning that there is no morphism g :M(B) →M(C)

such that g(z0) = z0.

Proof. This is just a graph map in the sense of [3]. Let us include the

description for completeness.

Note that for every string B = b1 . . . bn there is a canonical embedding

M(B) →M(BβD) given by zi → zi, i ≤ n, and also a canonical projection

M(Bγ−1E) →M(B) given by zi → zi, i ≤ n and zj → 0 for j > n.

Now, if B < C by 1), then define f :M(C) →M(B) to be the projection

M(C) = M(Bγ−1D) → M(B). If B < C by 2), then define f : M(C) →
M(B) to be the embeddingM(C) →M(CβE) =M(B). For 3) we obtain f

as a composite map M(C) =M(B′γ−1G) →M(B′) →M(B′βF ) =M(B).

Suppose that there exists a map g : M(B) → M(C) such that g(z0) =

z0. Note that M(C) is indecomposable and pure-injective (being of finite

dimension). By [6, Prop. 4.26], every noninvertible endomorphism of M(C)
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strongly increases the pp-type of every nonzero element. Since gf(z0) = z0,

it follows that gf is invertible. Therefore M(B) = im(f) ⊕ ker(g). Since

M(B) is indecomposable, and f, g ̸= 0, we conclude that f is epi and g

is mono. By symmetry, f is mono and g is epi, hence M(C) ∼= M(B), a

contradiction. �

Since M(C) is finitely presented, by [6, Prop. 8.4] there is a (positive

primitive) formula φC(x) which generates the pp-type of z0 in M(C).

Corollary 2.2. Let B < C be strings with first letter α. Then φB → φC

and this implication is proper.

Proof. Let p be the pp-type of z0 in M(B), and let q be the pp-type of z0 in

M(C). Then p is generated by φB and q is generated by φC . By Lemma 2.1,

there is a morphism f : M(C) → M(B) such that f(z0) = z0. It follows

that q ⊆ p, hence φB → φC . Suppose that φC → φB. Then there exists

a morphism g : M(B) → M(C) such that g(z0) = z0, which contradicts

Lemma 2.1. �

Clearly φC can be chosen of the form ∃ z1, . . . , zn, followed by a complete

description of the action on zi. In fact, for 1 ≤ i ≤ n−1 it suffices to describe

only the action given by ci and ci+1. Indeed, suppose we have α−1ziβ in

M(C), i.e. α and β are different arrows ending in zi. Then, for every arrow

γ starting in zi, we have either γα = 0 or γβ = 0, hence γzi must be zero.

If c1 = α is a direct arrow, and there exists γ such that γα ̸= 0, then the

formula should, in addition, say γz0 = 0. Similarly, we may need to add one

more relation for zn.

3. Width

Let L1 and L2 be chains with 0 and 1. By L = L1 ⊗ L2 we will denote

the modular lattice freely generated by L1 and L2. It is well known (see

[4, Th. 13]) that this lattice is distributive. Moreover, it is quite easy to

visualize the structure of L. Let L1×L2 be presented as a plane. We assign

to a ∈ L1 the vertical strip [0; a] × L2, and to b ∈ L2 the horizontal strip

L1 × [0; b]:
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1

+

1

L2 •b

• //

OO

0
0 •

a L1 1
• //

OO

0
0

+

L1 1

It follows from [4, proof of Th. 13] that the lattice generated by these strips

(with respect to ordinary meet and joint operations) is isomorphic to L. To

be more precise, we should avoid 1 ∈ L1 and 1 ∈ L2 being glued together

via this representation. This can be overcome as follows: add formally ∞
after 1 in L1, and the same for L2.

Note that an element a∧b is represented as a rectangle [0; a]× [0; b]. Since

L is distributive, and L1, L2 are chains, every element l ∈ L can be written

as l = (an ∧ b1)+ (an−1 ∧ b2)+ · · ·+(a1 ∧ bn), where a1 < · · · < an ∈ L1 and

b1 < · · · < bn ∈ L2 (we use + instead of ∨). Thus a typical element of L

looks like a descending ladder (where the first step may be of infinite height

and the last of infinite length):

•b2
(a2 ∧ b1) + (a1 ∧ b2)

•
+

+ +
b1

OO

//•
a1

•
a2

Note that we can rearrange brackets in l: l = an ∧ (b1 + an−1) ∧ · · · ∧
(bn−1 + a1) ∧ bn.

Given a, b ∈ L, (a/b) will denote the interval [a ∧ b; a].
Let a < a′ ∈ L1, b < b′ ∈ L2. Then the interval (a′ ∧ b′/a + b) =

[a′ ∧ b′ ∧ (a + b); a′ ∧ b′] = [(a ∧ b′) + (a′ ∧ b); a′ ∧ b′] can be thought as

the set theoretical difference of the representing figures, i.e. as a rectangle

P = [a; a′]× [b; b′] (caution: P is not an element of L):

•b′

•b

OO

//•
a

P

•
a′
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Given a lattice L with 0 and 1, we define the 2-dimension of L, 2dim(L),

by induction on the ordinals. Put 2dim(L) = 0 iff 0 = 1 in L, i.e. L consists

of one element. Set 2dim(L) = α, if 2dim(L) is not less than α, and for

every a ∈ L we have either 2dim(a/0) < α or 2dim(1/a) < α. For instance,

2dim(2n+1) = n+1 and 2dim(ω+1) = ω. Thus 2dim(L) shows how many

times we can split L into two ‘equal’ pieces. Note that 2dim(L) is defined

iff L does not contain the rationals as a suborder.

Let L be a (modular) lattice with 0 and 1. The width of L, w(L), will

be defined by induction on the ordinals. Set w(L) = 0 iff 0 = 1 in L. Now

put w(L) = α, if w(L) is not less then α, and for every a, b ∈ L we have

either (a + b/a) < α or (a + b/b) < α. For instance, if L is a chain with

at least two elements, then w(L) = 1. The width of L estimates how many

‘diamonds’ can be repeatedly embedded in L. In particular, w(L) ≥ α + 1

if there are a, b ∈ L such that ‘α diamonds’ can be nested in each of the

intervals (a+ b/a) and (a+ b/b), hence also in (a/a ∧ b) and (b/a ∧ b):

•1

•a+ b

{{
{{

{
CC

CC
C

•
CC

CC
Ca •

{{
{{

{ b

•a ∧ b
•0

Proposition 3.1. Let L1 and L2 be chains with 0 and 1 such that 2dim(L1) =

α, dim(L2) = β, and let L = L1 ⊗ L2. Then w(L) ≥ min(α, β).

Proof. Let a < a′ ∈ L1, b < b′ ∈ L2 be such that 2dim(a′/a) ≥ α,

2dim(b′/b) ≥ β and α, β ≥ γ. By induction on γ we prove that the width of

the interval (a′ ∧ b′/a + b) (it looks like the rectangle P = [a; a′] × [b; b′] in

the figure below) is not less than γ.

The proof is obvious when γ is a limit. So let γ = δ+1. Since 2dim(a′/a) ≥
γ, there exists an a′′ ∈ (a′/a) such that 2dim(a′′/a) ≥ δ and 2dim(a′/a′′) ≥
δ. Similarly there exists an b′′ ∈ (b′/b) such that 2dim(b′′/b) ≥ δ and

2dim(b′/b′′) ≥ δ:

7



•b′
P1

P2

P

•b′′

•b

OO

//•
a

•
a′′

•
a′

We prove that there are θ1, θ2 ∈ L such that

1) (a′ ∧ b′) ∧ (a+ b) < θ1, θ2 < a′ ∧ b′;
2) the interval (θ1+ θ2/θ1) is isomorphic to the interval (a′′∧ b′/a+ b′′) =

(a′′ ∧ b′)/(a′′ ∧ b′′)+ (a∧ b′) (it looks like the rectangle P1 = (a′′/a)× (b′/b′′)

on the figure);

3) the interval (θ1+ θ2/θ2) is isomorphic to the interval (a′∧ b′′/a′′+ b) =
(a′ ∧ b′′)/(a′ ∧ b)+ (a′′ ∧ b′′) (it looks like the rectangle P2 = (a′/a′′)× (b′′/b)

on the figure).

Then, by the induction hypothesis, we would have w(P1) ≥ δ, w(P2) ≥ δ,

therefore w(P ) ≥ γ.

It is quite easy to prove this on the level of figures (just insert P1 and P2

in P ) but the lattice theoretical proof is comparatively harder.

Take θ1 = (a′∧b′′)+(a∧b′) = a′∧(b′′+a)∧b′ and θ2 = (a′∧b)+(a′′∧b′) =
a′ ∧ (b+ a′′) ∧ b′:

•b′ •b′

•
θ1

b′′ • θ2b′′

•b •b

OO

//•
a

•
a′′

•
a′

OO

//•
a

•
a′′

•
a′

In particular, θ1 and θ2 are incomparable, and a′ ∧ b′ ∧ (a+ b) < θ1, θ2 <

a′ ∧ b′. Clearly we have θ1 + θ2 = (a′ ∧ b′′) + (a′′ ∧ b′) = a′ ∧ (b′′ + a′′) ∧ b′:

•b′

•
θ1 + θ2

b′′

•b

OO

//•
a

•
a′′

•
a′

To prove 2), take φ1 = a′′ ∧ b′ and ψ1 = (a′′ ∧ b′′) + (a ∧ b′):
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•b′ •b′

• φ1b′′ • ψ1b′′

•b •b

OO

//•
a

•
a′′

•
a′

OO

//•
a

•
a′′

•
a′

Then ψ1 < φ1, and (φ1/ψ1) is a rectangle P1. To prove that (φ1/ψ1) ∼=
(θ1 + θ2/θ1) it suffices to check that φ1 + θ1 = θ1 + θ2 and φ1 ∧ θ1 = ψ1.

But this is easily seen from the above figures.

To prove 3), let φ2 = a′ ∧ b′′ and ψ2 = (a′ ∧ b) + (a′′ ∧ b′′):

•b′ •b′

•b′′ •b′′

• φ2b • ψ2b

OO

//•
a

•
a′′

•
a′

OO

//•
a

•
a′′

•
a′

Then ψ2 < φ2, and (φ2/ψ2) is a rectangle P2.

To prove that (φ2/ψ2) ∼= (θ1 + θ2/θ2), it suffices to check that φ2 + θ2 =

θ1 + θ2 and φ2 ∧ θ2 = ψ2. This is also evident from the above figures. �

Corollary 3.2. Let L1 and L2 be lattices with 0 and 1 such that both

2dim(L1) and 2dim(L2) are undefined. Then w(L1 ⊗ L2) is undefined.

4. The main result

We are in a position to prove the main result of the paper.

Theorem 4.1. Let A be a non-domestic string algebra. Then the width of

the lattice of all pp-formulae over A is equal to infinity.

Proof. Recall that a band is a string C = c1 . . . cn of length ≥ 2 such that 1)

all powers Cm are defined; 2) C is not a power of a string of smaller length;

3) c1 is a direct letter and cn is an inverse letter. If c1 = α and cn = β−1,

then 1) yields that α and β are different arrows ending in the same vertex.

Thus β is uniquely determined by α.

Following [11], for an arrow α, by B(α) we denote the set of all bands

with first letter α. By what we have said above, the last letter β−1 is the

same for all bands in B(α). Since A is not domestic, by [11, p. 41] there is

9



an α for which there are two different bands B,C ∈ B(α), such that B and

C contain no substring of the form β−1α.

Let B = b1 . . . bn and C = c1 . . . cm, where we may assume that B <

C. Note that the case 2) (see the definition of < above) is not possible.

Indeed, then B = CδE, hence δ = α, and B contains a substring β−1α,

a contradiction. Thus either 1) C = Bγ−1D or 3) B = B′δF and C =

B′γ−1G. In both cases BC < CT for all T . Indeed, this is clear for 3) (see

remark above). For 1) it is also clear, sinceBC = BαC ′ and CT = Bγ−1DT .

Thus (see also [7, p. 450]) we obtain the following strongly descending

chain of strings (every word consisting of the letters B and C is a string):

BC > BCBC > BCB2C > BCB2CBC > BCB2CB2C > B2C .

The interval [B2C;BC] is isomorphic to [BCB2C;BCBC] (after removing

BC from the beginning) and [BCB2CB2C;BCB2CBC] (after removing

BCB2C from the beginning). Thus we may extend this construction to

obtain a dense subchain L1 of < with 0 and 1.

Recall that for each T ∈ L1 we have defined a pp-formula φT (x). By

Lemma 2.2, for all T < U ∈ L1 we have φT → φU , and this implication is

proper. Thus we obtain a dense chain of pp-formulae over A (we will use L1

also to denote this chain).

Now let us consider the words B−1 and C−1. The first letter of both

words is β, the last letter is α−1 and both B and C contain no substring

α−1β. Thus we may repeat our constructions to obtain a densely ordered

chain L2 (with 0 and 1) of words constructed from the letters B−1 and C−1.

Note that every word in L2 has β as a starting arrow and β ̸= α. As above

we may consider L2 as a densely ordered chain of pp-formulae ψS such that

ψS → ψT iff S < T .

For every V ∈ L2, U ∈ L1 we may consider a string module M =

M(V −1U) defined by the word V −1U with the basis z−m, . . . , z0, z1, . . . , zn,

such that z0 is located between V −1 and U (in particular βz−1 = z0 and

αz1 = z0). It is easy to check that (M, z0) is a free realization of φU ∧ ψV

(it is just the amalgam of modules M(U) and M(V ) by the submodule gen-

erated by z0; the other way to see this is to construct for every element n

of a module N with N |= (φU ∧ ψV )(n) a morphism f : M → N such that

f(z0) = n).
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Let L be generated by L1 and L2 in the lattice of all pp-formulae over A.

We prove that L does not have width (then the lattice of all pp-formulae

over A does not have width). By Lemma 3.1, it suffices to check that L is

freely generated by L1 and L2. Considering the canonical forms of elements

in L, it remains to prove the following: if T < U ∈ L1 and S < V ∈ L2,

then φU ∧ ψV does not imply φT + ψS .

Assume to the contrary that φU ∧ ψV implies φT + ψS . Let M =

M(V −1U), z0 be chosen (as above) to be a free realization of φU ∧ ψV .

It is clear (see a similar proof in [8, p. 26]) that φT (M) and ψS(M) are

homogeneous spaces, i.e.
∑

i λizi ∈ φT (M) iff zi ∈ φT (M) for every i with

λi ̸= 0. Thus z0 ∈ φT (M) or z0 ∈ ψS(M) yields that either φU ∧ ψV → φT

or φU ∧ ψV → ψS .

If φU ∧ ψV → ψT , then there is a morphism f : M → M(T ) such that

f(z0) = z0. Restricting f to the submoduleM(U), we obtain a contradiction

to Lemma 2.1. Similarly φU ∧ψV → ψS yields (since M(V ) is a submodule

of M) ψV → ψS , a contradiction again. �

Corollary 4.2. Let A be a (finite dimensional) non-domestic string algebra

over a countable field. Then there exists a superdecomposable pure-injective

A-module.

Proof. By Theorem 4.1 the width of the lattice of all pp-formulae over A is

undefined. It remains to apply [6, Thm. 10.13]. �
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[11] J. Schröer, Hammocks for string algebras. Doctoral thesis, 1997.

[12] M. Ziegler, Model theory of modules, Annals Pure Appl. Math., 26 (1984), 149–213.

Department of Mathematics, The Ohio State University at Lima, 4240, Cam-

pus Drive, Lima, OH 45804, USA

E-mail address: puninskiy.1@osu.edu

12


