SUPERDECOMPOSABLE PURE-INJECTIVE MODULES EXIST OVER SOME STRING ALGEBRAS

GENA PUNINSKI

Abstract

We prove that over every non-domestic string algebra over a countable field there exists a superdecomposable pure-injective module.

1. Introduction

There is a well-known dichotomy for the behavior of a finite dimensional algebra A over a field \mathbb{k}. Roughly speaking A is tame if a description of all finite dimensional A-modules is available, otherwise A is wild. This definition can be made precise, and then Drozd's theorem states (at least for an algebraically closed \mathbb{k}) that every finite dimensional algebra is either tame or wild but not both.

Unfortunately, the usual definition of tameness and wildness refers to some infinite dimensional A-modules (what Ringel [10] describes as an 'external structure') so it would be nice to find one appealing only to finite dimensional representations. It has been conjectured by Prest [6, Ch. 13] (see also [10, p. 38] and a discussion in [5, p. 219]) that A is tame if and only if A does not posses a superdecomposable (i.e. without indecomposable direct summands) pure-injective module. This means just that every direct product of indecomposable finite dimensional A-modules contains an indecomposable direct summand.

In this paper we refute this conjecture by proving that over an arbitrary non-domestic string algebra over a countable field there exists a superdecomposable pure-injective module. This class of algebras is well known to be tame and includes among others the Gelfand-Ponomarev algebras as well

[^0]as the dihedral algebras. So it seems now that the classification of pureinjective modules over a non-domestic string algebra (just slightly touched on by Baratella and Prest [1]) is a more challenging problem than previously believed.

Is countability of \mathbb{k} necessary in the above result? In fact, our main result does not appeal to any countability assumption: we prove that the lattice of all pp-formulae over any non-domestic string algebra does not have width. But to extract a superdecomposable pure-injective module from this we need an ingenious construction of Ziegler [12] that seems to work only if \mathbb{k} is countable.

Note that the existence of a superdecomposable pure-injective module over a Gelfand-Ponomarev algebra was posed as a problem in Jensen and Lenzing [5] (see Remark 8.72 and Problem 13.28). So we give a partial, i.e. over a countable field, answer to this question. The reader may also consult [5] to see how to construct a superdecomposable pure-injective module over many (conjecturally all) wild finite dimensional algebras.

All the machinery used in the proofs is quite well known. Prest [7] was the first to notice that over the dihedral (and many similar) algebras there exists a densely ordered chain of morphisms between string modules. In other words the lattice of all pp-formulae over these algebras does not have m-dimension. This result (with a similar proof) was extended by Schröer [11] to an arbitrary non-domestic string algebra.

It is also well known (see Ringel [8] for a detailed explanation) that over a dihedral algebra there are two natural chains of proper morphisms between indecomposable finite dimensional modules. All we have noticed is that the (distributive) lattice generated by these two chains is generated freely, therefore its width is undefined.

I am indebted to Mike Prest for his helpful suggestions and interest.

2. Preliminaries

Quite a few model theoretic terms, which appear in what follows, can be found in [6]. Otherwise, as is explained in [7], one could always replace the term 'pp-formula' by 'pointed finitely presented module', and the term 'implication between pp-formulae' by 'morphism between pointed modules'. All the modules in the sequel will be left modules.

Let A be a finite dimensional algebra given by a quiver with monomial relations. For an arrow α, we will denote by $s(\alpha)$ the starting point of α and by $e(\alpha)$ the ending point of α. Also, for every arrow α, we consider its formal inverse α^{-1} as an arrow going into an opposite direction. Thus $e\left(\alpha^{-1}\right)=s(\alpha)$ and $s\left(\alpha^{-1}\right)=e(\alpha)$.
A is said to be a string algebra if the following holds true: 1) every vertex is a starting point for at most two arrows and the ending point for at most two arrows; 2) given an arrow α, there is at most one arrow β such that $e(\beta)=s(\alpha)$, and the composition $\alpha \beta$ is not a relation in A (i.e. nonzero in $A) ; 3$) given an arrow α, there is at most one arrow γ such that $e(\alpha)=s(\gamma)$, and the composition $\gamma \alpha$ is not a relation in A.

For instance, the Gelfand-Ponomarev algebra $G_{n, m}$ is the path algebra of the quiver

with relations $\alpha^{n}=\beta^{m}=0$. It is well known that $G_{n, m}$ is tame non-domestic if $m+n \geq 5$.

Let A be a string algebra. A string C over A is a sequence $c_{1} \ldots c_{n}$ with the following properties: 1) for every i, either $c_{i}=\alpha$ is a (direct) arrow, or $c_{i}=\alpha^{-1}$ is an inverse arrow; 2) $s\left(c_{i}\right)=e\left(c_{i+1}\right)$ for every $\left.1 \leq i \leq n-1 ; 3\right)$ $c_{i} \neq c_{i+1}^{-1}$ for every $\left.1 \leq i \leq n-1 ; 4\right)$ neither $c_{i} \ldots c_{i+t}$ (direct arrows) nor $c_{i+t}^{-1} \ldots c_{i}^{-1}$ (inverse arrows) is a relation in A for $1 \leq i \leq i+t \leq n$.

Given a string $C=c_{1} \ldots c_{n}$, we define a string module $M(C)$ in the following way. The \mathbb{k}-basis for $M(C)$ is given by vectors z_{0}, \ldots, z_{n}. If $c_{i}=\alpha$ is direct, then set $\alpha z_{i}=z_{i-1}$, and if $c_{i}=\beta^{-1}$ is inverse, then put $\beta z_{i-1}=z_{i}$. All the remaining actions are defined to be zero. Following [11] we draw direct arrows from upper right to lower left and inverse arrows from upper left to lower down.

For instance,

is a string module over $G_{2,3}$ corresponding to the string $\beta \alpha^{-1} \beta^{2} \alpha^{-1}$.
By [2] all string modules over a string algebra are indecomposable.

Let $C=c_{1} \ldots c_{n}, n \geq 1$ be a string. What are the possible ways to extend this string to a string $c_{1} \ldots c_{n} c_{n+1}$? Suppose that c_{n} is a direct letter α. If c_{n+1} is a direct letter β, then β ends in the vertex where α starts. Since $\alpha \beta$ is a string, there is only one possibility for β (such that $\alpha \beta$ is not a relation in A). On the other hand, if c_{n+1} is an inverse letter γ^{-1}, then α and γ start at the same vertex (and $\alpha \neq \gamma$ since $C c_{n+1}$ is a string). Since there are at most two arrows starting in the given vertex, γ is uniquely defined. Moreover, if both β and γ are defined, then $\alpha \beta \neq 0$ implies $\gamma \beta=0$.

Now we define a (linear) order $<$ on the set of strings with the same first (direct) letter. For strings B and C we put $B<C$ if one of the following holds true 1) $B \gamma^{-1} D=C$ for some γ, D; 2) $B=C \beta E$ for some β, E; or 3) $B=B^{\prime} \beta F, C=B^{\prime} \gamma^{-1} G$ for some B^{\prime}, F, γ and G. Thus, to compare two strings we look at their common initial part (by assumption, there is at least one letter in this part), and compare letters following this part.

Note that, if $B<C$ by 1), then $B<C S$ for arbitrary S (such that $C S$ is a string). Similarly, if $B<C$ by 2), then $B T<C$ for any T. Finally, if $B<C$ by 3), then $B U<C V$ for all U and V.

Lemma 2.1. Let $B<C$ be strings with first letter α, and let $M(B), M(C)$ be the corresponding string modules. Then there exists a (canonical) morphism $f: M(C) \rightarrow M(B)$ such that $f\left(z_{0}\right)=z_{0}$. Moreover, every such morphism is proper, meaning that there is no morphism $g: M(B) \rightarrow M(C)$ such that $g\left(z_{0}\right)=z_{0}$.

Proof. This is just a graph map in the sense of [3]. Let us include the description for completeness.

Note that for every string $B=b_{1} \ldots b_{n}$ there is a canonical embedding $M(B) \rightarrow M(B \beta D)$ given by $z_{i} \rightarrow z_{i}, i \leq n$, and also a canonical projection $M\left(B \gamma^{-1} E\right) \rightarrow M(B)$ given by $z_{i} \rightarrow z_{i}, i \leq n$ and $z_{j} \rightarrow 0$ for $j>n$.

Now, if $B<C$ by 1), then define $f: M(C) \rightarrow M(B)$ to be the projection $M(C)=M\left(B \gamma^{-1} D\right) \rightarrow M(B)$. If $B<C$ by 2$)$, then define $f: M(C) \rightarrow$ $M(B)$ to be the embedding $M(C) \rightarrow M(C \beta E)=M(B)$. For 3) we obtain f as a composite map $M(C)=M\left(B^{\prime} \gamma^{-1} G\right) \rightarrow M\left(B^{\prime}\right) \rightarrow M\left(B^{\prime} \beta F\right)=M(B)$.

Suppose that there exists a map $g: M(B) \rightarrow M(C)$ such that $g\left(z_{0}\right)=$ z_{0}. Note that $M(C)$ is indecomposable and pure-injective (being of finite dimension). By [6, Prop. 4.26], every noninvertible endomorphism of $M(C)$
strongly increases the pp-type of every nonzero element. Since $g f\left(z_{0}\right)=z_{0}$, it follows that $g f$ is invertible. Therefore $M(B)=\operatorname{im}(f) \oplus \operatorname{ker}(g)$. Since $M(B)$ is indecomposable, and $f, g \neq 0$, we conclude that f is epi and g is mono. By symmetry, f is mono and g is epi, hence $M(C) \cong M(B)$, a contradiction.

Since $M(C)$ is finitely presented, by [6, Prop. 8.4] there is a (positive primitive) formula $\varphi_{C}(x)$ which generates the pp-type of z_{0} in $M(C)$.

Corollary 2.2. Let $B<C$ be strings with first letter α. Then $\varphi_{B} \rightarrow \varphi_{C}$ and this implication is proper.

Proof. Let p be the pp-type of z_{0} in $M(B)$, and let q be the pp-type of z_{0} in $M(C)$. Then p is generated by φ_{B} and q is generated by φ_{C}. By Lemma 2.1, there is a morphism $f: M(C) \rightarrow M(B)$ such that $f\left(z_{0}\right)=z_{0}$. It follows that $q \subseteq p$, hence $\varphi_{B} \rightarrow \varphi_{C}$. Suppose that $\varphi_{C} \rightarrow \varphi_{B}$. Then there exists a morphism $g: M(B) \rightarrow M(C)$ such that $g\left(z_{0}\right)=z_{0}$, which contradicts Lemma 2.1.

Clearly φ_{C} can be chosen of the form $\exists z_{1}, \ldots, z_{n}$, followed by a complete description of the action on z_{i}. In fact, for $1 \leq i \leq n-1$ it suffices to describe only the action given by c_{i} and c_{i+1}. Indeed, suppose we have $\alpha^{-1} z_{i} \beta$ in $M(C)$, i.e. α and β are different arrows ending in z_{i}. Then, for every arrow γ starting in z_{i}, we have either $\gamma \alpha=0$ or $\gamma \beta=0$, hence γz_{i} must be zero. If $c_{1}=\alpha$ is a direct arrow, and there exists γ such that $\gamma \alpha \neq 0$, then the formula should, in addition, say $\gamma z_{0}=0$. Similarly, we may need to add one more relation for z_{n}.

3. Width

Let L_{1} and L_{2} be chains with 0 and 1 . By $L=L_{1} \otimes L_{2}$ we will denote the modular lattice freely generated by L_{1} and L_{2}. It is well known (see [4, Th. 13]) that this lattice is distributive. Moreover, it is quite easy to visualize the structure of L. Let $L_{1} \times L_{2}$ be presented as a plane. We assign to $a \in L_{1}$ the vertical strip $[0 ; a] \times L_{2}$, and to $b \in L_{2}$ the horizontal strip $L_{1} \times[0 ; b]:$

It follows from [4, proof of Th. 13] that the lattice generated by these strips (with respect to ordinary meet and joint operations) is isomorphic to L. To be more precise, we should avoid $1 \in L_{1}$ and $1 \in L_{2}$ being glued together via this representation. This can be overcome as follows: add formally ∞ after 1 in L_{1}, and the same for L_{2}.

Note that an element $a \wedge b$ is represented as a rectangle $[0 ; a] \times[0 ; b]$. Since L is distributive, and L_{1}, L_{2} are chains, every element $l \in L$ can be written as $l=\left(a_{n} \wedge b_{1}\right)+\left(a_{n-1} \wedge b_{2}\right)+\cdots+\left(a_{1} \wedge b_{n}\right)$, where $a_{1}<\cdots<a_{n} \in L_{1}$ and $b_{1}<\cdots<b_{n} \in L_{2}$ (we use + instead of \vee). Thus a typical element of L looks like a descending ladder (where the first step may be of infinite height and the last of infinite length):

Note that we can rearrange brackets in $l: l=a_{n} \wedge\left(b_{1}+a_{n-1}\right) \wedge \cdots \wedge$ $\left(b_{n-1}+a_{1}\right) \wedge b_{n}$.

Given $a, b \in L,(a / b)$ will denote the interval $[a \wedge b ; a]$.
Let $a<a^{\prime} \in L_{1}, b<b^{\prime} \in L_{2}$. Then the interval $\left(a^{\prime} \wedge b^{\prime} / a+b\right)=$ $\left[a^{\prime} \wedge b^{\prime} \wedge(a+b) ; a^{\prime} \wedge b^{\prime}\right]=\left[\left(a \wedge b^{\prime}\right)+\left(a^{\prime} \wedge b\right) ; a^{\prime} \wedge b^{\prime}\right]$ can be thought as the set theoretical difference of the representing figures, i.e. as a rectangle $P=\left[a ; a^{\prime}\right] \times\left[b ; b^{\prime}\right]$ (caution: P is not an element of L):

Given a lattice L with 0 and 1 , we define the 2 -dimension of $L, 2 \operatorname{dim}(L)$, by induction on the ordinals. Put $2 \operatorname{dim}(L)=0$ iff $0=1$ in L, i.e. L consists of one element. Set $2 \operatorname{dim}(L)=\alpha$, if $2 \operatorname{dim}(L)$ is not less than α, and for every $a \in L$ we have either $2 \operatorname{dim}(a / 0)<\alpha$ or $2 \operatorname{dim}(1 / a)<\alpha$. For instance, $2 \operatorname{dim}\left(2^{n}+1\right)=n+1$ and $2 \operatorname{dim}(\omega+1)=\omega$. Thus $2 \operatorname{dim}(L)$ shows how many times we can split L into two 'equal' pieces. Note that $2 \operatorname{dim}(L)$ is defined iff L does not contain the rationals as a suborder.

Let L be a (modular) lattice with 0 and 1 . The width of $L, \mathrm{w}(L)$, will be defined by induction on the ordinals. Set $\mathrm{w}(L)=0$ iff $0=1$ in L. Now put $\mathrm{w}(L)=\alpha$, if $\mathrm{w}(L)$ is not less then α, and for every $a, b \in L$ we have either $(a+b / a)<\alpha$ or $(a+b / b)<\alpha$. For instance, if L is a chain with at least two elements, then $\mathrm{w}(L)=1$. The width of L estimates how many 'diamonds' can be repeatedly embedded in L. In particular, $\mathrm{w}(L) \geq \alpha+1$ if there are $a, b \in L$ such that ' α diamonds' can be nested in each of the intervals $(a+b / a)$ and $(a+b / b)$, hence also in $(a / a \wedge b)$ and $(b / a \wedge b)$:

Proposition 3.1. Let L_{1} and L_{2} be chains with 0 and 1 such that $2 \operatorname{dim}\left(L_{1}\right)=$ $\alpha, \operatorname{dim}\left(L_{2}\right)=\beta$, and let $L=L_{1} \otimes L_{2}$. Then $\mathrm{w}(L) \geq \min (\alpha, \beta)$.

Proof. Let $a<a^{\prime} \in L_{1}, b<b^{\prime} \in L_{2}$ be such that $2 \operatorname{dim}\left(a^{\prime} / a\right) \geq \alpha$, $2 \operatorname{dim}\left(b^{\prime} / b\right) \geq \beta$ and $\alpha, \beta \geq \gamma$. By induction on γ we prove that the width of the interval $\left(a^{\prime} \wedge b^{\prime} / a+b\right)$ (it looks like the rectangle $P=\left[a ; a^{\prime}\right] \times\left[b ; b^{\prime}\right]$ in the figure below) is not less than γ.

The proof is obvious when γ is a limit. So let $\gamma=\delta+1$. Since $2 \operatorname{dim}\left(a^{\prime} / a\right) \geq$ γ, there exists an $a^{\prime \prime} \in\left(a^{\prime} / a\right)$ such that $2 \operatorname{dim}\left(a^{\prime \prime} / a\right) \geq \delta$ and $2 \operatorname{dim}\left(a^{\prime} / a^{\prime \prime}\right) \geq$ δ. Similarly there exists an $b^{\prime \prime} \in\left(b^{\prime} / b\right)$ such that $2 \operatorname{dim}\left(b^{\prime \prime} / b\right) \geq \delta$ and $2 \operatorname{dim}\left(b^{\prime} / b^{\prime \prime}\right) \geq \delta:$

We prove that there are $\theta_{1}, \theta_{2} \in L$ such that

1) $\left(a^{\prime} \wedge b^{\prime}\right) \wedge(a+b)<\theta_{1}, \theta_{2}<a^{\prime} \wedge b^{\prime}$;
2) the interval $\left(\theta_{1}+\theta_{2} / \theta_{1}\right)$ is isomorphic to the interval $\left(a^{\prime \prime} \wedge b^{\prime} / a+b^{\prime \prime}\right)=$ $\left(a^{\prime \prime} \wedge b^{\prime}\right) /\left(a^{\prime \prime} \wedge b^{\prime \prime}\right)+\left(a \wedge b^{\prime}\right)$ (it looks like the rectangle $P_{1}=\left(a^{\prime \prime} / a\right) \times\left(b^{\prime} / b^{\prime \prime}\right)$ on the figure);
3) the interval $\left(\theta_{1}+\theta_{2} / \theta_{2}\right)$ is isomorphic to the interval $\left(a^{\prime} \wedge b^{\prime \prime} / a^{\prime \prime}+b\right)=$ $\left(a^{\prime} \wedge b^{\prime \prime}\right) /\left(a^{\prime} \wedge b\right)+\left(a^{\prime \prime} \wedge b^{\prime \prime}\right)$ (it looks like the rectangle $P_{2}=\left(a^{\prime} / a^{\prime \prime}\right) \times\left(b^{\prime \prime} / b\right)$ on the figure).

Then, by the induction hypothesis, we would have $\mathrm{w}\left(P_{1}\right) \geq \delta, \mathrm{w}\left(P_{2}\right) \geq \delta$, therefore $\mathrm{w}(P) \geq \gamma$.

It is quite easy to prove this on the level of figures (just insert P_{1} and P_{2} in P) but the lattice theoretical proof is comparatively harder.

Take $\theta_{1}=\left(a^{\prime} \wedge b^{\prime \prime}\right)+\left(a \wedge b^{\prime}\right)=a^{\prime} \wedge\left(b^{\prime \prime}+a\right) \wedge b^{\prime}$ and $\theta_{2}=\left(a^{\prime} \wedge b\right)+\left(a^{\prime \prime} \wedge b^{\prime}\right)=$ $a^{\prime} \wedge\left(b+a^{\prime \prime}\right) \wedge b^{\prime}:$

In particular, θ_{1} and θ_{2} are incomparable, and $a^{\prime} \wedge b^{\prime} \wedge(a+b)<\theta_{1}, \theta_{2}<$ $a^{\prime} \wedge b^{\prime}$. Clearly we have $\theta_{1}+\theta_{2}=\left(a^{\prime} \wedge b^{\prime \prime}\right)+\left(a^{\prime \prime} \wedge b^{\prime}\right)=a^{\prime} \wedge\left(b^{\prime \prime}+a^{\prime \prime}\right) \wedge b^{\prime}$:

To prove 2), take $\varphi_{1}=a^{\prime \prime} \wedge b^{\prime}$ and $\psi_{1}=\left(a^{\prime \prime} \wedge b^{\prime \prime}\right)+\left(a \wedge b^{\prime}\right)$:

Then $\psi_{1}<\varphi_{1}$, and $\left(\varphi_{1} / \psi_{1}\right)$ is a rectangle P_{1}. To prove that $\left(\varphi_{1} / \psi_{1}\right) \cong$ $\left(\theta_{1}+\theta_{2} / \theta_{1}\right)$ it suffices to check that $\varphi_{1}+\theta_{1}=\theta_{1}+\theta_{2}$ and $\varphi_{1} \wedge \theta_{1}=\psi_{1}$.

But this is easily seen from the above figures.
To prove 3), let $\varphi_{2}=a^{\prime} \wedge b^{\prime \prime}$ and $\psi_{2}=\left(a^{\prime} \wedge b\right)+\left(a^{\prime \prime} \wedge b^{\prime \prime}\right)$:

Then $\psi_{2}<\varphi_{2}$, and $\left(\varphi_{2} / \psi_{2}\right)$ is a rectangle P_{2}.
To prove that $\left(\varphi_{2} / \psi_{2}\right) \cong\left(\theta_{1}+\theta_{2} / \theta_{2}\right)$, it suffices to check that $\varphi_{2}+\theta_{2}=$ $\theta_{1}+\theta_{2}$ and $\varphi_{2} \wedge \theta_{2}=\psi_{2}$. This is also evident from the above figures.

Corollary 3.2. Let L_{1} and L_{2} be lattices with 0 and 1 such that both $2 \operatorname{dim}\left(L_{1}\right)$ and $2 \operatorname{dim}\left(L_{2}\right)$ are undefined. Then $\mathrm{w}\left(L_{1} \otimes L_{2}\right)$ is undefined.

4. The main result

We are in a position to prove the main result of the paper.
Theorem 4.1. Let A be a non-domestic string algebra. Then the width of the lattice of all pp-formulae over A is equal to infinity.

Proof. Recall that a band is a string $C=c_{1} \ldots c_{n}$ of length ≥ 2 such that 1) all powers C^{m} are defined; 2) C is not a power of a string of smaller length; 3) c_{1} is a direct letter and c_{n} is an inverse letter. If $c_{1}=\alpha$ and $c_{n}=\beta^{-1}$, then 1) yields that α and β are different arrows ending in the same vertex. Thus β is uniquely determined by α.

Following [11], for an arrow α, by $B(\alpha)$ we denote the set of all bands with first letter α. By what we have said above, the last letter β^{-1} is the same for all bands in $B(\alpha)$. Since A is not domestic, by [11, p. 41] there is
an α for which there are two different bands $B, C \in B(\alpha)$, such that B and C contain no substring of the form $\beta^{-1} \alpha$.

Let $B=b_{1} \ldots b_{n}$ and $C=c_{1} \ldots c_{m}$, where we may assume that $B<$ C. Note that the case 2) (see the definition of $<$ above) is not possible. Indeed, then $B=C \delta E$, hence $\delta=\alpha$, and B contains a substring $\beta^{-1} \alpha$, a contradiction. Thus either 1) $C=B \gamma^{-1} D$ or 3) $B=B^{\prime} \delta F$ and $C=$ $B^{\prime} \gamma^{-1} G$. In both cases $B C<C T$ for all T. Indeed, this is clear for 3) (see remark above). For 1) it is also clear, since $B C=B \alpha C^{\prime}$ and $C T=B \gamma^{-1} D T$.

Thus (see also [7, p. 450]) we obtain the following strongly descending chain of strings (every word consisting of the letters B and C is a string):

$$
B C>B C B C>B C B^{2} C>B C B^{2} C B C>B C B^{2} C B^{2} C>B^{2} C .
$$

The interval $\left[B^{2} C ; B C\right]$ is isomorphic to $\left[B C B^{2} C ; B C B C\right]$ (after removing $B C$ from the beginning) and $\left[B C B^{2} C B^{2} C ; B C B^{2} C B C\right]$ (after removing $B C B^{2} C$ from the beginning). Thus we may extend this construction to obtain a dense subchain L_{1} of $<$ with 0 and 1 .

Recall that for each $T \in L_{1}$ we have defined a pp-formula $\varphi_{T}(x)$. By Lemma 2.2, for all $T<U \in L_{1}$ we have $\varphi_{T} \rightarrow \varphi_{U}$, and this implication is proper. Thus we obtain a dense chain of pp-formulae over A (we will use L_{1} also to denote this chain).

Now let us consider the words B^{-1} and C^{-1}. The first letter of both words is β, the last letter is α^{-1} and both B and C contain no substring $\alpha^{-1} \beta$. Thus we may repeat our constructions to obtain a densely ordered chain L_{2} (with 0 and 1) of words constructed from the letters B^{-1} and C^{-1}. Note that every word in L_{2} has β as a starting arrow and $\beta \neq \alpha$. As above we may consider L_{2} as a densely ordered chain of pp -formulae ψ_{S} such that $\psi_{S} \rightarrow \psi_{T}$ iff $S<T$.

For every $V \in L_{2}, U \in L_{1}$ we may consider a string module $M=$ $M\left(V^{-1} U\right)$ defined by the word $V^{-1} U$ with the basis $z_{-m}, \ldots, z_{0}, z_{1}, \ldots, z_{n}$, such that z_{0} is located between V^{-1} and U (in particular $\beta z_{-1}=z_{0}$ and $\left.\alpha z_{1}=z_{0}\right)$. It is easy to check that (M, z_{0}) is a free realization of $\varphi_{U} \wedge \psi_{V}$ (it is just the amalgam of modules $M(U)$ and $M(V)$ by the submodule generated by z_{0}; the other way to see this is to construct for every element n of a module N with $N \models\left(\varphi_{U} \wedge \psi_{V}\right)(n)$ a morphism $f: M \rightarrow N$ such that $\left.f\left(z_{0}\right)=n\right)$.

Let L be generated by L_{1} and L_{2} in the lattice of all pp-formulae over A. We prove that L does not have width (then the lattice of all pp-formulae over A does not have width). By Lemma 3.1, it suffices to check that L is freely generated by L_{1} and L_{2}. Considering the canonical forms of elements in L, it remains to prove the following: if $T<U \in L_{1}$ and $S<V \in L_{2}$, then $\varphi_{U} \wedge \psi_{V}$ does not imply $\varphi_{T}+\psi_{S}$.

Assume to the contrary that $\varphi_{U} \wedge \psi_{V}$ implies $\varphi_{T}+\psi_{S}$. Let $M=$ $M\left(V^{-1} U\right), z_{0}$ be chosen (as above) to be a free realization of $\varphi_{U} \wedge \psi_{V}$. It is clear (see a similar proof in [8, p. 26]) that $\varphi_{T}(M)$ and $\psi_{S}(M)$ are homogeneous spaces, i.e. $\sum_{i} \lambda_{i} z_{i} \in \varphi_{T}(M)$ iff $z_{i} \in \varphi_{T}(M)$ for every i with $\lambda_{i} \neq 0$. Thus $z_{0} \in \varphi_{T}(M)$ or $z_{0} \in \psi_{S}(M)$ yields that either $\varphi_{U} \wedge \psi_{V} \rightarrow \varphi_{T}$ or $\varphi_{U} \wedge \psi_{V} \rightarrow \psi_{S}$.

If $\varphi_{U} \wedge \psi_{V} \rightarrow \psi_{T}$, then there is a morphism $f: M \rightarrow M(T)$ such that $f\left(z_{0}\right)=z_{0}$. Restricting f to the submodule $M(U)$, we obtain a contradiction to Lemma 2.1. Similarly $\varphi_{U} \wedge \psi_{V} \rightarrow \psi_{S}$ yields (since $M(V)$ is a submodule of $M) \psi_{V} \rightarrow \psi_{S}$, a contradiction again.

Corollary 4.2. Let A be a (finite dimensional) non-domestic string algebra over a countable field. Then there exists a superdecomposable pure-injective A-module.

Proof. By Theorem 4.1 the width of the lattice of all pp-formulae over A is undefined. It remains to apply [6, Thm. 10.13].

References

[1] S. Baratella, M. Prest, Pure-injective modules over the dihedral algebras, Comm. Algebra, 25(1) (1997), 11-31.
[2] M. Butler, C.M. Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra, 15(1-2) (1987), 145-179.
[3] W.W. Crawley-Boevey, Maps between representations of zero relational algebras, J. Algebra, 126 (1989), 259-263.
[4] G. Grätzer, General Lattice Theory. Academie Verlag, 1978.
[5] C.U. Jensen, H. Lenzing, Model Theoretic Algebra. Gordon and Breach, Algebra, Logic and Applications, 2 (1989).
[6] M. Prest, Model Theory and Modules. Cambridge University Press, London Math. Soc. Lecture Note Series, 130 (1987).
[7] M. Prest, Morphisms between finitely presented modules and infinite dimensional representations, pp. 447-455 in: Canadian Math. Soc., Conference Proceedings, 24 (1998).
[8] C.M. Ringel, The indecomposable representations of the dihedral 2-groups, Math. Ann., 214 (1975), 19-34.
[9] C.M. Ringel, Some algebraically compact modules. I, pp. 419-439 in: Abelian Groups and Modules, A. Facchini, C. Menini eds., Kluwer, 1995.
[10] C.M. Ringel, Infinite length modules. Some examples as introduction, pp. 1-73 in: Infinite Length Modules, H. Krause, C.M. Ringel eds., Trends in Math., Birkhaüser, 2000.
[11] J. Schröer, Hammocks for string algebras. Doctoral thesis, 1997.
[12] M. Ziegler, Model theory of modules, Annals Pure Appl. Math., 26 (1984), 149-213.

Department of Mathematics, The Ohio State University at Lima, 4240, Campus Drive, Lima, OH 45804, USA

E-mail address: puninskiy.1@osu.edu

[^0]: 2000 Mathematics Subject Classification. 16G20, 16D50.
 Key words and phrases. Pure-injective module, string algebra, superdecomposable module.

 This paper was written during the visit of the author to the University of Manchester supported by EPSRC grant GR/R44942/01. He would like to thank the University for the kind hospitality.

