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We study the existence of weak solutions of stochastic differential equations
dX(t) = f(t, X(t))dt +g(t, X(1))dW (t), X € RY, (1)

with Borel measurable functions f : R, x R — R? and g : R, x R? — R%™? where W (t) is a
d-dimensional Brownian motion.

The aim of the present paper is to weaken known conditions on the functions f and g providing
the existence of weak solutions of Eq. (1).

The first existence theorem for weak solutions was obtained in [1] under the assumption that
f and g are continuous bounded functions. It was shown in [2] that, for weak solutions to exist,
it is sufficient that f and g are measurable bounded functions and ¢ is a nondegenerate matrix
(ATgg™\ > v||M||?, v > 0, for all A € R?). Then the nondegeneracy condition for the matrix g was
weakened. It was shown in [3] that the system

da(t) = fO(t, z(t),y(t))dt + g (¢, z(t), y(t))dW (t),

ay(t) = FO a0, y0)dt + 9O (20, yO)AW (D),  zeR, yert, O

has weak solutions under the following assumptions: the functions f, f®, ¢ and ¢ are Borel
measurable and bounded and continuous with respect to y, and ¢! is a nondegenerate matrix.
A similar theorem was proved in [4]. It was shown in [5] that Eq. (1) has weak solutions if f and g are

measurable functions and have a linear growth as || X || — oo, and the closure of the intersection of

the weak degeneracy set of the mapping g, that is, the set {(t, X)) fU(t X) (det gg™ (T, y))fldr dy = oo
for each open neighborhood U (t, X) of a point (¢, X )}, with the set of points of discontinuity of

the function f or g is contained in the set of zeros of the mappings f and g.

In the present paper, we prove an existence theorem for weak solutions of Eq. (1), which, in
the case of system (2), can be stated as follows: if the functions f®), f® ¢M and ¢ are
Borel measurable and locally bounded and continuous with respect to y and the set H x R

is contained in the set of points of continuity of the functions f and gg*, where H = {(t,m) €
R, x R!| for each open neighborhood U(t,z) of the point (¢,z), there exists an a > 0 such that
the integral fU(m) SUD, e pi-1, |yl <a (det g g (¢, 2, y))f1 dt dz is either undefined or equal to oo},

then system (2) has a weak solution.

We use the following notation: a A b is the minimum of numbers a and b; a V b is the maximum
of numbers a and b; P is the probability distribution of a random variable z; the relation P* = PY
means that the distributions of random variables = and y coincide; E(x) is the expectation of a
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1052 LEVAKOV, VAS’KOVSKII

random variable z; f? is the ith component of a vector function f; ¢g“ is the (i,7)th entry of a
matrix function g; 14 is the characteristic function of a set A;

1/2

1X] = (21, za)ll = (2 + -+ 23) 775
a.s. stands for “almost surely”; C, Cy, Cs, ... are universal constants; B(0,7) = {a; € RY|||z] < r}.

Definition. Suppose that there exists a process X(t) defined on some probability space
(Q, 7, P) with a flow .% of o-algebras such that the following assertions are valid.

1. There exists an (% )-stopping time e such that the process X (t)1j,)(t) is (% )-coordinated
and has continuous trajectories for ¢t < e a.s. and limsup,;, | X (t)|| = oo if e < co.

2. There exists an (.% )-Brownian motion W (t) with W (0) = 0 a.s.

3. The processes f(t, X(t)) and g(¢, X (t)) belong to the spaces L*° and L¥*, respectively, where
Llc is the set of all measurable (% )-coordinated processes 1) such that fot [¥(s,w)||’ds < oo a.s.
for each t > 0, i € {1, 2}.

4. The relation

t

X(t) = X(0) +/f(T,X(T))dT+ /g(T,X(T))dW(T)

is valid with probability 1 for all ¢ € [0,e). Then the tuple (Q,.7, P, %, W (t), X (t),e) [or, briefly,
X(t)] is called a weak solution of Eq. (1).

The matrix o(t, X) = g(t, X)g" (¢, X) is symmetric and nonnegative. There exist Borel measur-
able orthogonal diagonal matrices T and A = diag (A, ..., \q), respectively, such that o = TAT™.
Let g* = T diag (\/)\_1 ey \/)\_d) Without loss of generality, we assume that g = ¢* in system (1)
[6, pp. 97-98 of the Russian translation].

We take the rows of the matrix g with indices ,..., ;. Then

OB1,....6 (t7:1:17 cee 7xd) = col (9517 s 7951) (.ggla s 795) )

where gg, is the §;th row of the matrix g and

1/2
Dg(o,a):{(xﬁl+l,...,xﬁd) | (o, 4ot a3 ga},

We construct the set

H(ﬂl,...,ﬂl):{(t,mﬁl,...,xﬁl) |

for any open neighborhood! U (t,xg,,...,2s) of the point (¢,zgs,,...,2s,), there exists an a > 0
such that the integral

/ sup (detog,. 5 (txy,... 2q))  dtdag, ... dg

(wﬁl e T3 )EDg(O,a)
+1 d
U (t,wﬁl 7...,w/3l)

is either undefined or equal to oo}.

We say that a real function h(t, X) = h(t,x1,...,x4) satisfies condition A if there exist rows
9p,s---,9p of the matrix g such that, for any fixed (¢, zg,,...,23), the function h is continuous
with respect to the remaining components (azgl e ,xﬁd) of the vector X and the set

{(t,fEl,...,ZEd) ‘ (t,flfﬁl,...,flfﬁl) EH(ﬂl,...,ﬂ[)}

is contained in the set of points of continuity of the mapping h.

1 An open neighborhood is treated as a neighborhood open in the space of the variables (t,zpy,-- . z8).
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EXISTENCE OF WEAK SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS 1053

A function h : R, x R — R is said to be locally bounded if, for each b > 0, there exists a
constant N (b) such that ||h(t, X)|| < N(b) for all ¢ € [0,b] and X € B(0,b).

Let g™V be the [ x d matrix consisting of the first [ rows of the matrix g, let g be the (d —1) x d
matrix consisting of the remaining rows of the matrix g, let () be the vector consisting of the first

components of the vector f, and let f® be the vector consisting of the remaining components of the
vector f. Next, let X = (z,y), z € R', y € R*™, oW = gWgWT B(0,a) = {z € R"| ||z]| < a},

By(0,a) ={y € R | |ly| <a}, H = {(t,m) € R, x R' | for any open neighborhood U (¢, z) of the

point (¢,7) in R, x R', there exists a number a > 0 such that the integral

/ sup (det 0(1)(T,z,y))71 drdz

y€B2(0,a)
Ul(t,z)

is either indefinite or equal to oo}, and

H®= (R x R)\H,  (H),= {(tv$) €Ry x R'| sup (t—s|+]z—yl) < 7},

(s,y)eH

(H): = (Ry x R)\(H),.

Now we consider the system of the form (2) with the above-constructed functions f, f ¢\,
and ¢®.

Lemma 1. Let (2, .7, P, %, W (t),z(t),y(t), t € Ry) be a weak solution of system (2), and let
the functions f, £ gV and g be locally bounded and Borel measurable. Then for arbitrary
a>0 and T > 0, there exists a constant c(a,T,l,d) such that

TAT®

B / (det o™ (1, (1), (1)) " e, 2(8), y(1))dt

0
1/(14+1)

< C(CL, 1,1, d) sup WH (t7 Z, y)dt dx ) (3)
yEBg(O,a)
[0,7]xB1(0,a)

where 7 = inf{t|||z(t)| V |ly(t)|| > a}, for any nonnegative Borel measurable function ¢ (t,x,y)
such that the mapping (t,x) — Sup,cp, oy ¥ (t, ,y) is Lebesgue measurable for each b > 0.

Proof. Take arbitrary T > 0 and @ > 0. Let ¢ : Ry x R' — R, be a bounded continuous
function. We set ¢(t,z) = 0 for ¢ < 0. By the Krylov lemma [2, Lemma II.2.7], there exists a
bounded function z(t,z) < 0 vanishing for ¢ < 0 and such that the following conditions are satisfied
for all sufficiently large n and for all (¢,x) € Ry x B1(0,a).

1.

Oz, (t,x) 1 l (1)ij 0z, (t,x)
o tg 2 o T —tay) s

ij=1

))1/(l+1)

ci(a,l) (dete™(T — t, 2,y . (t,x) <

where ¢, (a,l) is a positive constant, c(% are the entries of the matrix o),
oWi(T —t x,y)=0 for t>T,
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1054 LEVAKOV, VAS’KOVSKII

zn(t, ) is the convolution of the functions z(¢,x) and J,(¢, ), i.e.,

zn(t,x) = 2(t,x) * J,(t,x) = / z(1,m)Jy (t — 7,2 —n)dT dn,
[t=7|<1/n, lz—n]<1/n
qn(t, o) = q(t, z) x J,(t, ), Jo(t, ) = n'T¢(nt, nx),
and ((t,z) is a nonnegative infinitely differentiable function vanishing for ||z|| > 1 and |¢| > 1 and
satisfying f\t|§1 dt f||m||g1 C(t,z)dr = 1.
2. If b € R! and ¢ > 0 satisfy the condition ||b|| < ac/2, then

_Zaz" ), o ¢lzn(t, @)

for all (t,z) € Ry x B1(0,a).
3. There exists a constant cy(a,l) such that

1/(1+1)
sl <e@) | [ @
[0,¢]x B1(0,a)
for all (t,z) € R, x R.
We set

TAT®

Iwz/wwwmmw

0
By using the It6 formula and relations 1-3, we obtain

E(I(gn)) < éE / ( 02 (T Z" i (1, a(t (t))a zn((;l;;?;;x(t))) ”

0 zgl

Y (T — t, (1)) dt.

= lE(zn (T —(T AT, x(TNANTY)) — 2,(T,2(0))

C1

/ZZM ) 05 1, ), (1)) 1

=1 j5=1
TAT® a ))
Zn
/Z wwmmﬂ
< 3(a,T,l,d) sup |2, (t, )| < e3(a,T,1,d) sup |2(t, z)|
0<t<T, z€B1(0,a) 0<t<T, z€B1(0,a)
1/(1+1)
< cy(a,T,l,d) / ¢t x)dt dx . (4)
[0,T]x B (0,a)

Let ¢, (T — t,z) = r,(t,z) and q(T — t,z) = r(t,z); from inequality (4) and the Fatou lemma,
we have
1/(1+1) 1/(141)

4 / r Tt x)dt do =y / ¢ (t, x)dt dx
[0,T]x By (0,a) [0,T]x By (0,a)
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EXISTENCE OF WEAK SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS 1055

TAT®

>E /(deta(l)(tax(t)7y(t)))

0
TAT®

S E / (det oM (1, (1), (1)) " g(T — t, 2(t))dt

0
TAT®

_E / (det o (¢, 2(t), y()) (e, a(t))dt | (5)

0

YD i infq, (T —t,z(t))dt

n—oo

The last relation is valid for all nonnegative continuous bounded functions r(t,z). By using
Theorem 1.20 in [7], we find that inequality (5) remains valid for nonnegative Lebesgue measurable
bounded functions (¢, z). By approximating the function r(¢, z) by the sequence of functions r An,
n > 1, we obtain inequality (5) for a Lebesgue measurable nonnegative function r(¢, x).

Let ¢(t, z,y) be an arbitrary function satisfying the assumptions of Lemma 1. Then, by applying
the above-proved assertion to the function r(t,z) = sup,¢p,(0,.) ¥ (t; Z,y), We obtain

TAT®

E / (det o (¢, 2(t), y(1)) " (e, 2 (t), y(t))dt

0

TAT®
l
<B| [ (etota0.0)" ™ s vtal)pat
J y€B2(0,a)
1/(14+1)
< c(a,T,1,d) / sup (L, y)dt d
y€B2(0,a)
[0,T71x B1(0,a)

The proof of the lemma is complete.

Corollary 1. Let the assumptions of Lemma 1 be wvalid, and let ¥ (t,x,y) be a nonnegative

Borel measurable function continuous with respect to y for any (t,z) € Ry x R'. Then for arbitrary
T € R, and a € Ry, there exists a constant c(a,T,l,d) such that

TAT®

E /1<H>g<t,x<t>>¢<t,x<t>,y<t>>dt

0
1/(1+1)

< c(a,T,l,d) / sup (det 0(1)(t,:17,y))71 sup Tt 2, y)dt d
yEBs(0,a) yEBs(0,a)
([0,T]x B1(0,a))N(H)¢

for each € > 0, where 7* = inf{t | ||z(¢)| V ||ly(t)]] > a}.

Indeed, since the integrability and hence the Lebesgue measurability of the function

—1/(141)
(t,x) — Lipe(t,z) sup (det J(l)(t,x,y))

y€B2(0,a)

, (t,x) €0,T] x B1(0,a),

follow from the definition of the set H, from Corollary 1, we find that it suffices to apply Lemma 1
to the function ¢y (t,z,y) = L) (t, ) (det J(l)(t,w,y))il/(lﬂ) SUD, e g, 0,0 Y, 7, y). [We assume
that 11 (t,z,y) = 0 if 1) (t,2) = 0]
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1056 LEVAKOV, VAS'KOVSKII
Consider the matrices o, = TA,TT, where

A, =diag(M +1/n)An,...,(Aa+1/n)An),
g = Tdiag ((()\1 F1/m) A2 (g +1/n) A n)1/2> :
[, X) = (fi(t, X)), i, X) = (f'(t, X) V (—n)) An, i=1,....d, n € N.
We divide the matrices g, and f, into submatrices g(V, ¢®, £V and f{? in the same way as the
matrices g and f have been divided into the submatrices ¢V, ¢®, f®, and f®. For each positive

integer n, there exists a constant a,, > 0 such that det g,g* = deto,, > «,, for all (¢, X) € R, x R%
moreover, lim,,_, f.(t, X) = f(t, X) and lim,,_,, 0,,(t, X) = o(t, X) at each point (¢, X) € R, x R

Corollary 2. Let a € Ry and T € R,. Let f and g be locally bounded Borel measurable
functions. Let X,,(t) = (z,(t),yn(t)) be a sequence of weak solutions of the systems
dz(t) = fO(t,2(t), y(t))dt + gi (¢, 2(t), y(t))dW (¢),
dy(t) = f2 ¢, 2(t),y(@t)dt + g (¢, z(t), y(£))dW (¢).

Let (Xn(t)), n > 1, be a sequence of continuous processes such that PEi) = pEut) gnd
X (8) —nooe X(s) = (&(s),4(s)) uniformly on each closed interval in Ry a.s., 7% —n_oo 7% a.5.,
where 7%, 7%, and T are stopping times such that
[E0))
[&(t)

2@ VIgll <a  vE<7

IV g <a Yt <7y,
Vgl <a Vvt <77,

n

(t)dt | <cla,T,l,d)

&
—_
T
N
—~
\‘PF
=
—
~
N—
SN—
<
—
\‘PF
=
—
~
:_/
<

1/(14+1)

X / sup (det a(l)(t,x,y))fl sup (¢, x,y)dt do (6)
yEBs(0,a) yEBs(0,a)
(0.1 Br (0. (),

for any € > 0 and any nonnegative Borel measurable function (t,z,y) continuous with respect
to y, where c¢(a,T,l,d) is the same constant as in Lemma 1.

Proof. Let ¢ > 0. By Corollary 1, the inequality

TAT)

E / Ly, (ba(D) 7 (b (D) dt | < c(a,T,1,d)

0
1/(1+1)

X / < sup (detag)(t,x,y))_l) rT(t, z)dt dx (7)

yEBg(O,a)

(10,T1x B1(0,a))N(H)¢

holds for any nonnegative continuous bounded function r(¢, z).
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EXISTENCE OF WEAK SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS 1057

By using inequality (7), the Fatou lemma, the inequality Lmye, (t, Zn(t)) > Lmye (t,2(t)) valid

for all sufficiently large n and for all ¢ € [0,T], and the inequality det oV (¢, z,y) > det (¢, z, y)
valid for all (¢,z,y) € [0,T] x B1(0,a) X By(0,a) and for all sufficiently large n, we obtain

1/(1+1)

c(a,T,l,d) / < sup (deta(l)(t,x,y))l) r Nt x)dt do
y€B2(0,a)

([0.71% By (0.a))N(H)E

1/(1+1)

> liminfe(a, T, 1, d) sup (det afll)(t,a:,y))1> r (¢, x)dt dx

<[0,T1x31<o,a>>m<H>:,2<

n—oo y€B2(0,a)
TATY
> liminf / Lame,, (b 2a () 7 (£, 2a(8)) dt
0
T/\%na
_ liminfE / Lame, (b () 7 (£, (1)) dt
0
TAT®
> lim inf B / Ly (1, 2(0) v (£, 20 (1)) dt
0
TAFTE TA#®
>F / 1(H)g (tvi‘(t))hminf’r (t7j7l(t)) dt | = E / 1(H)2 (t,i‘(t))’l"(t,i‘(t)) dt
0 0

It follows from the theorem on monotone classes that the last inequality remains valid for
arbitrary Lebesgue measurable nonnegative functions r(¢,x). By applying this inequality to the
function r(¢,z) = sup,cp, (0,0 ¥ (t; 7, y) and by following the lines of the proof of Lemma 1, we obtain
the desired inequality (6).

Lemma 2. Let f(t,x,y) be a real Borel measurable locally bounded function continuous with
respect to y, and let f,(t,z,y) = f(t,z,y) * J,(t,x), n > 1. Then the convergence

sup (deto(t,z,y)) " sup |fult.zy) — f(tz,y)| T dtdz — 0
y€B2(07a) y€B2(07a) n—oo
([0,7)x B1(0,a))N(H)s

takes place for arbitrary a € Ry, T € R, and v > 0.

Proof. Take e >0, a € R,,and T € R,. Let

D = (]0,T] x B1(0,a)) N (H) D, = (-1, T+ 1] x By(0,a+1))N(H)S;

v’ v’

then [, sup,cp, 0.0 (det oM (¢, z, y))71 dt dx < co. There exists a d(e) > 0 such that

/ sup (det J(l)(t,a:,y)fl dtdx < e (8)

y€B2(0,a)

for any set £ C D; with u(E) < 6(e) (where p is the Lebesgue measure).
By the Scorza-Dragoni theorem [8], there exists a closed set

K(a,T,8(c)) C [-1,T + 1] x By(0,a + 1)

DIFFERENTIAL EQUATIONS Vol. 43 No.8 2007



1058 LEVAKOV, VAS’KOVSKII
such that the restriction of the function f to K x B(0,a + 1) is continuous and
i((—1,T+1] % By(0,a+ 1) \K) < 6(e).

By the Cantor theorem, there exists a v(e,a,T) such that |f (¢, z1,y1) — f (t2, 22,y2)] < € for
arbitrary

(t1,21,91) 5 (t2, T2,12) € K x By(0,a + 1),
|t2 - 2(:1| g I/(G,(I,T), ||1’2 - wl” S I/(E,CZ,T), ||y2 - @/1|| S I/(E,CZ,T).

It follows that

sup ft—mz—zy) - fE-—T2—-zp) <ec (9)
v1,92€B2(0,0), [l 2 | <v(e,a,T)

for arbitrary
(t,x) € KN ([0,T] x B1(0,a)),

arbitrary 7 with |7| < 1, and arbitrary z with ||z|| < 1.
Now it follows from (8) and (9) that

/ sup (det oW(t, x, y)) -

J yEBz(O,a)
B sup ‘f(t_TwT_Zayl)_f(t_T,fL’_Z,yg)‘lJrldtdaj‘

y1,y2€B2(0,a)
lyi—y2lI<v(ea,T)

= / sup (det J(l)(t,:l?,y))_l
~ yEBQ(O,a)
PnK
X sup |f(t—7‘,ac—z,y1)—f(t—T,a:—z,yg)|l+1dtd:E

y1,Y2€ B2(0,a)
[ly1—y2lI<v(e,a,T)

[+1
+/ sup | (t—ma— ) — f(t =Tz — 2yt
~ y1,y2€B2(0,a)
D\K |ly1—yz2l|<v(e,a,T)

X sup (det 0(1)(t,a:,y))71 dtdx < Cet? (10)
y€B2(0,a)

for all 7 and 2, |7| <1, ||z]| < 1.
By using inequalities (9) and (10) and the generalized Minkowski inequality, we obtain

1/(1+1)
-1 1+1
[ sw (deto(t.a.m) sup | (b ys) — fu (b, o) dtda
) y€B2(0,a) Y1,Y2€ B2 (0,a)
[ly1 —y2ll<v(e,a,T)
0 ~1/(141)
< dt dx sup (deta (t,m,y))
J y€B2(0,a)
D [T|<1/n
IzlI<1/n
L1y 10D
X sup |f(t—7',ac—z,y1)—f(t—T,ac—z,y2)|Jn(T,z)d7‘dz

y1,y2€B2(0,a)
[ly1 —y2lI<v(e,a,T)

DIFFERENTIAL EQUATIONS Vol. 43 No.8 2007



EXISTENCE OF WEAK SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS 1059

< / dr dz / sup (det 0(1)(t,m,y))_1

y€B2(0,a)

|7|<1/n D
llzl<1/n

1/(1+1)

X sup |f(t—7‘,ac—z,y1)—f(t—T,a:—z,yg)|l+l J (7, 2)dt dx
y1,92€B2(0,a)
lyr—y2(I<v(e,a,T)

< / CY Ve (1,2)dr dz < Cye. (11)

|7|<1/n
llzlI<1/n

The relation

[ s (deto b)) Ihaltiny) - Fltap)] e - 0

y€B2(0,a) n—00

D

is valid for each y € By(0,a).
Let Y = {y} be a finite v(e, a, T)-net for By(0,a). There exists an ng(e) such that

/ sup (et oV(t,2,y)) " sup |f, (t2,y) — f (x| dede < ¢ (12)

y€B2(0,a) yrEY

for all n > ng(e).
By using inequalities (10)—(12) for all n > ng(e), we obtain the relations

[ s (deto ) sw (futiay) - )| deds
J yE€B3(0,a) yEB2(0,a)

D

-1 I+1
< / sup  (detoW(t,z,9)) " sup |fulty) — fo (b y)[ T dtda
y€B2(07a) y€B2(07a)
Y €Y
ly—yrll<v(e,a,T)

sup (det U(l) (t7 z, y)) B sup ‘fn (t7 z, yk) - f (t7 z, yk)‘H—l dt dx
) y€B2(0,a) YykEY

+

— T—

+ [ sup (detoV(ty)  sup [t wy) = f(Gw )| dbde < Coe'.
) y€B2(0,a) yeBze(?/,a)
D k

Yy
ly—yrll<v(e,a,T)
The proof of Lemma 2 is complete.

Theorem. Let f(t,X) and g(t,X) be Borel measurable locally bounded functions, and let the
components of the functions f(t,X) and o(t,X) = g(t, X)g¥ (t,X) satisfy condition A. Then for
any given probability v on (Rd, D (Rd)) , Eq. (1) has a weak solution with the initial distribution v.

Proof. By the Krylov theorem [2, Th. I1.6.1], for each n € N, the equation

X,.(t) = X,(0) +/fn (T,Xn(T))dT—i-/gn (1, X, (1) dWa(r),  teR,, (13)

has a weak solution (£2,,,.%,, P, %, W, (t), X,.(t), t € R, ) with the initial distribution v.
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We set 77" = inf{t | || X,.(t)|| > m} and X" (t) = X,, (t A7) and consider the double sequence

(Xi,m) (X)) . (X
(X3,m) (X3,73) ... (X37")
(Xom) (X5m) .. (X7

Set ), = (X}, ), (X3, 72), ..., (X, mm),...), k=1,2,...
We introduce a metric g in (C ([0, +00), Rd) .0, —I—OO]) and a metric D in
((C ([0, +00), R?) , [0, +00]) x - -+ x (C ([0, +00), R") , [0, 400]) x --)
as follows:
T 7l

— 1+7'_1+7'1
D((Xp,7m) oo (X)) (X mh) oo (X515 0)

- 1 m m m m
= Z 2m+1Q((Xn ' Th, )7(Xk s Tk ))
m=1

o((z,7),(z"7")) = Z 2% < sup ||z(t) — 2 (t)]| A 1> + ;

0<t<n

For any T' > 0 and any fixed m € N, there exist constants M;(m) an M (m,T) such that the
following relations are valid.

1 sup, B (IX7(0)[*) < My(m).
2. sup, E (HX,’Z”(t) — X,’Z”(S)H4) < M(m,T)|t — s|* for arbitrary s,t € [0,7].
It follows from Theorem 1.4.3 in [6] that the sequence

(X7, n>1,

n''n

is dense in (C ([0, +00), RY) , [0, +oo]) for each m € N.

Lemma 3. The sequence ¥, n > 1, is dense in the space
((C ([07 +OO)7Rd) ) [07 +OO]) X X (C ([07 +OO)7Rd) ) [07 +OO]) X ) :

Proof. Take an arbitrary ¢ > 0. For any positive integer m, there exists a compact set
K, < (C ([O,+oo),Rd),[O,+oo]) such that P& 7 (K,,) > 1 —¢/2™ for all n € N. Let
K=K, x---x K,, x--- Let us show that K is a compact set in the space

((C ([0, +00), R) , [0, +00]) x -+ x (C ([0, +00), R"),[0,400]) x --).

For any 6 > 0, we take an m = m(d) such that 1/2™ < 6/2. For each K, j =1,...,m, there exists
a finite (6/2)-net {si,...,s] }. For Kj, j > m + 1, we take an arbitrary element s’ € K;.
Let

S={(sp,,--rsp ™2 ) [ kie{l, .. m}, o ke {l L nn )}

For each k € K, there exists an § € S such that
s 16 ~ 1 & ¢
p(Re)s Al s Lodh,
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Consequently, S is a finite d-net for K. Obviously, K is a closed set. Therefore, K is compact. Since
the sequence (X, 7), n > 1, is dense in (C ([0, +00), R%) , [0, +0o0]) for each m € N, we obtain

n TL

The proof of the lemma is complete.
The sequence ¥,, n > 1, satisfies the assumptions of the Skorokhod theorem [6, Th. 1.2.7].

Its proof implies that there exists a subsequence n; of the sequence n (to simplify the notation,
we write n instead of n;) and processes

€n = ((z}zvn}z)7>(zg7n:’;)7)v €= ((217771)7"'>(Zm777m)7"')

on some probability space (€2,.#,P) such that the processes z(t) and z™(t) are continuous,
Per = P 2™(t) —, o 2™ (t) uniformly on each compact set in Ry a.s., and 7" —, .., 0™ a.s.
In addition, z™(t) = 2™"(t) for t < n™, and ™ < ™! ass. Let e = lim,, ..o n™. We define a
process z(t) as follows: z(t) = 2z™(¢t) for t < n™, ™ < oo, 2(t) = 2™(¢t) for t < n™, N™ = o0,
and z(t) = 0 for t > e. By o0, we denote the minimum o-algebra with respect to which all
random vectors z(s), 0 < s < t +¢€, m > 1, are measurable. Let % = ()., 0 then the
process z(t)1jg,¢)(t) is (% )-coordinated and has continuous trajectories for ¢ < e. Moreover, e is a
(. )-stopping moment and lim sup,;, [|z(t)| = oo for e < co.

We fix an m € N and take arbitrary s,t € R,, s < t, an arbitrary twice continuously differ-
entiable function h : R? — R bounded together with its partial derivatives of order < 2, and an
arbitrary continuous bounded (% (C’ (R+, Rd)))—measurable function ¢ : C' (R+, Rd) — R.

Relation (13), together with the It6 formula, implies that

En<<h<X;“<t>>—h<X;“<s>>— / (% 0 (1 X7 (0) b, (X3 (7)

+Z X (r hmi<X;”<T>>>dT>q<X:?>>:o. (14)

We fix the component fi(t, X) of the vector f with index i. By using condition A, we take

the rows of the matrix g with indices 3i,..., [, such that the function f*(¢, X) is continuous with
respect to the variables £ = (zg,41,...,2g,) for any fixed (¢,2) = (t,23,,...,25) and the set
{(t,x1,...,2q) | (t,xp,,...,25) € H(B1,...,0)} is contained in the set of points of continuity

of the function f(¢, X). (Without loss of generality, one can assume that 8, = 1, ..., 3 = l.)
Each of the processes X,,, X", z, 2", and 2™ splits into two processes, X,, = (XR,X,L>, Xmn =

n n

n ’ n

H (fy,...,0) and set (Un)17m)l (t,z1,...,2q) = ay, (t,:i“,:é) and o1, (t,z1,...,24) =@ (t,i,a%).

Take a sequence ¢, | 0 as k — oco. Let us prove the relation

(Xm Xm) z = (2,5), Z" = (2’” sm ) and 2™ (2’”, ém) For simplicity, we write H instead of

tAny
tm (| [ S, oz @) £2(r 22,200 b (270200 dr ) a (22, 20)
-
—E / L, (7,27 (7)) f(,27(0),27(0)) b (27(7), 27(0) ) dr | a (27,27 )| = 0. (15)
sA™
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It follows from the local boundedness of f* and the construction of f¢ that, to prove relation (15),

it suffices to show that

tAng!
lim E 71(H)gk (r, 20 (7 20(0), 200 ) by (22) 20(0) ) dir | @ (20,200 ) | = .
sAn
(16)

Let f <t,i,a§) = fi <t,§;,a§) x J,. (t,2), r > 1. By using Corollary 1 and Lemma 2, we obtain
the relations

tAny
lim limsup F ( / L, (7,2,'(7)) (fz (7-, 221(7-),,7,3;”(7-)) —f (T, 2:?(7'),23,?1(7')))
sAnY

% hy. (z,T(r), é,;”(r)) d¢> q (2,7, z,T)

sup (det a (7’, z, af‘))_l

< C lim (
rooo I | <m
([0,¢]x B1(0,m))N(H)¢e,
1/(14+1)
‘ X B N\ [
X sup fl(T,i,a%)—frl(T’a}’j)‘ dej) -0 o
2 1<m

Now, by (17), to prove relation (16), it remains to show that

tAng!

lim lim E(( / Ly, (7,20(7) (T,Q,T(T),éﬁn(T))

T—00 N—00

Indeed,

tAn,"

lim lim E(( / Ly, (7,2,°(7)) fr
sAnY

e, (3200, 520(0)) d7> a(0 m))

tAn™

[ (o, ezp@ B (rm) 2 e (200200 o (20, 50)

e
—~
R
N
s 3
—
\]
:—/
iy
—
\]
N~—
N

=
sAn™
~Lans, (20 J (7 27(0).27(0) hay (270, 27(7) ¢ (27,27 ) dr
sAn™
[ (s, ez o) 7 (r @200 b (220,200 a (30,2
sAn

i (r2 @2 m) b (270, 27(0)) g (27, 27) )
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tAng!

+ / (1(H)§k (r,20()) f: (7'7 221(7')77«%1?1(7')) I, (7321(7'), 272”(7')) q (@T,éﬁ)
T, (7 27(1) fi (7. 27(0),27(7) ) B, (27(7), 27(7) ) q (27, 27) Y
[ (1, 2@ (7 (rem@.2m@) = 7 (rem).im))

% h. (2’”(7), ém(f)) q (2’”, ém)>d7
sAp™

+ / Ly, (m2™(7)) [ (T, 73’”(7),25’”(7)) R, (ém(T),ém(T)) q <2m7§m) dr

sAn

+ /n Ly, (m2™(7)) [ (T, 73’”(7),25’”(7)) R, (73’”(7)757“(7)) q <5m’§m) dr

T—00 N—00

Let us estimate each term: lim, ., lim, . (|Lo| + |I3]| + |I5] + |Is]) = 0, since sANT —,, oo SAN™
a.s., t AN —, o t AN™ a.s.; by Lemma 2 and Corollary 2, we have

A -1

lim lim |I;] < Cy lim ( sup <deta (7’,33,33))

(10,6 x BL(O,m)N(H)E, I | <m
1/(1+1)
. (L
X sup fz(mz,gz)— (7’9696)‘ drdaj> —0
2 <m
Let us show that

lim lim |[;]| =0. (18)

T—00 N—00

For each positive integer k, we construct a sequence of continuous functions ¢; : Ry x R — [0,1]
such that ¢; < 1[H]?k’ i Tisoo 1(H)5k' By Corollaries 1 and 2,

lim lim limsup £

J /00 r—00 n—oo

< [ (o, 22 = ()

x fi <¢, 57 (7), é;ﬁ(T)) ha. (2,7(7), é,zn(T)) d¢> q (2;;5 z,T)

< Cy lim limsup B / Lo, (150 (Lo, (72 30(7) = 0y (7, 20(7)) ) dr

J7X n—ooco
. -1
sup ((deta(T,:ﬁ,aﬁ))

[l [|<m
k

1/(1+1)
. M R
X (1(H)?k (1,2) — ¢ (1, x)) )dT dm) =0, (19)
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}LDQO TlijgoE(( / (1(H)gk (1,27(7)) — o5 (7, 5m(7)))

sAn™

X i (7. 27(), 27(0)) by (27(7),27(0)) d¢> a2, z)> 0. (20)

Since (2;”(7), é,T(T)) —n—oo (2’”(7‘), ém(r)) uniformly with respect to 7 € [0, ¢] with probability 1,
we have

lim lim lim E( / (o 2o £ (720 @) 200 oy (212000, 30 ) 0 (22020
i (1A Ji (r27(0),27()) B, (27(0),27(7) ) 0 (27, ém))m) - 0. (21)

Relation (18) readily follows from (19)—(21). The proof of (16) and hence of (15) is complete.
There exists a sequence k,, — 400, n — o0, such that

tAn
lim E / Ly (1,20(7)) ;(T,z,’y(f),zﬁ(f)> h, (g;ln(T)’ ﬁ;n(T)) dr q(é,T,é,T)
sAng

tAn™

- / e (7, 5™(7)) f (T,g’n(f),ém(f)) ha. (g’n(f),ém(f)) dr q(zm,ém) . (22)

sAn™
From Lemma 2.5 in [5], relation (22), and the continuity of the function f¢(¢, X) on the set

{t,z1, ... xq) | (t,xe,... @) € H(L, ..., 1)},

we obtain the relation

tAn
lim B 71@)% (r,22(0) £ (7,200, 200 ) e, (20(0), A7) ) dr | (20, 200)
—E / 1 (1,27 (7)) f° (T,zm(f),ém(7)> ha (,asm(f),ém(f)) dr q(gm,§m> . (23)
sAn™

By taking into account (22), (23), and the relation P¥» = P, we get

(| [ X ) b (@) dr | a(x])

m
SATN

tAn™

—E / £ (7, 2 (7)) b, (27(0)) T | (27 (24)

sAn™
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By using similar considerations for any fixed i, € {1,...,d}, one can justify the relations
AT
lim E / 09 (1, X7(7)) haro, (XT(7)) dr | g (XT)
o SATIM
tAn™
_B / 0 (7, 2™ (1)) haa, (=7(7)) dr | g (=) (25)
sAn™

From (14), (24), and (25), we obtain

E((h(zm<t>>—h<zm<s>>— / (%Zoﬁ (1, 27(7)) by, (27(7)

sAn™

therefore, the process

t

d d
1 ij i
h(z(t)) — h(2(0)) —/ (5 D 0 (T 2 () e, (2(7)) + Y (7, 2(7)) (Z(T))) dr
o i,j=1 i=1
is a local (.% )-martingale.
As was shown in [6, pp. 159-160 of the Russian translation], on the extension (Q, T, ]5) with
the flow .% of the probability space (Q,.#, P) with the flow .#, there exists an (L%— )—Brownian

motion W (t) with W(0) = 0 a.s. such that the relation
2(t) = 2(0) + | f(r,2(1))dr + [ g(7,2(7))dW (1)
1o

is valid with probability 1 for any ¢ € [0,e). Consequently, (Q,ﬁ},P,Z W(t),z(t),e) is a weak
solution of Eq. (1). The proof of the theorem is complete.
Consider the following example:

dr1(t) = (r (@1(8) + ta3(t)) dt + r (z2(t)) dW4 (1),
dxo(t) =1 (z2(t) + 1) dt + xo(t)dW, (1),

where r(z) = { 1_1 g i i 8 The function o = ggT is continuous; therefore, condition A is valid

for it. Consider the function f. For the function f%) (¢,z1,2,) = r(x,) + tz2, we choose the
first row of the matrix g, H(1) is an empty set, and for f® (¢,21,25) = r (x5 + 1), we choose
the second row of the matrix g; obviously, the set

H(2) X{l’l GR}:{(t,l'l,l'Q) |tER+, T ER, ZL‘QZO}

is contained in the set of points of continuity of the mapping f®. Consequently, the function f sat-
isfies condition A. By the theorem in the present paper, for any given probability v on (Rd, D (Rd)),

there exists a weak solution with the initial distribution v. Note that known theorems [1-5] do not
imply the existence of weak solutions of the system in question.
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