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1 Introduction

A ring is serial if it admits a left and a right decomposition into a direct sum
of uniserial modules. Artinian serial rings were introduced by Asano and
Köthe and were considered as “generalized uni–serial rings” by Nakayama
[13]. A natural example is a ring Tn(D) of upper triangular matrices over a
(skew) field D. It is also often that a group ring kG of a finite group G over
a field k is serial. Besides, every proper factor of a hereditary noetherian
prime ring is of this kind by Eisenbud and Griffith [3].

Artinian serial rings also provides us by a natural example of rings of a
finite representation type. Precisely by Nakayama [14] every module over
such a ring is a direct sum of uniserial cyclic modules and there is only finite
number of those up to isomorphism.

So the theory of modules over artinian serial rings seems to be completely
clear. Slightly less is known on the structure of artinian serial rings itselves.
Goldie [6] proved that a nonsingular artinian serial ring is a direct sum
of blocked upper triangular matrix rings over skew fields. There is also
some improvement of this result by Murase [10] : every indecomposable
artinian serial ring with a simple projective module is a homomorphic image
of a blocked upper triangular matrix ring over a skew field. Note that the
homomorphic images of a ring Tn(D) could be easily described using “star
sets” (see [2]).

An essential progress was made also by using so called Kuppisch series
(see Kuppisch [8]) i.e. a specially ordered sequence of lengths of indecompos-
able projective modules eiR. On this way Murase [10] completely described
artinian serial rings such that the length of every module eiR does not exceed
the Goldie dimension of R (rings of first kind in his terminology). There is
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also a result of Fuller [4] along these lines: every serial finite dimensional
algebra over a perfect field is isomorphic to a semigroup algebra of a very
easily described semigroup.

Note that Eisenbud and Griffith [2] splitted indecomposable artinian
serial rings in four classes 1) artinian semisimple rings; 2) artinian principal
ideal rings; 3) homomorphic images of blocked upper triangular matrices
over a skew field and 4) which is essentially the complement of 1)–3).

In this paper we will present the theory of artinian serial rings in an uni-
fied way. In particular following to Kiev’s school approach (see for instance
Kirichenko [7]) we will permanently use the notion of a quiver similarly to
the theory of finite dimensional algebras. We show that the quiver of an
artinian serial ring R is a disjunct union of circles and lines, where only one
component occurs if R is indecomposable. What follows is a description of
the above splitting theorem in terms of the quiver. Precisely the four cases
in this result correspond to a shape of the quiver: 1) a point; 2) a loop; 3)
a line of length at least two; 4) a circle of length at least two.

The main theme for the further researches in this paper is how to find
a hidden triangular matrix construction into an artinian serial ring. The
main technical ingredient is so called “blow–up” construction which was
made explicit in Kirichenko [7] and implicit in Müller [9]. On this way we
show that every indecomposable artinian serial ring with a circle quiver is a
homomorphic image of a ring R, where R is obtained from a quasi–Frobenius
ring by finite many blow–ups. So the main difficulty is to describe serial QF-
rings. Note that serial QF-rings can be characterized as artinian serial rings
with a constant Kuppisch series. Also every serial group ring of a finite
group over a field is QF.

We show that except one particular case a basic indecomposable serial
QF-ring is a kind of semigroup ring over an artinian uniserial ring. Be-
tween exceptional examples of serial QF-rings we find one which is not a
homomorphic image of any hereditary noetherian prime ring.

We also investigate and give a complete description of artinian serial
rings with a faithful indecomposable module (we will call them d-rings).
They also are characterized in terms of their Kuppisch series: this sequence
is decreasing with a difference one. In particular, every artinian serial ring
is a subdirect product of d-rings.

2



2 Basic facts

A module M is called uniserial if its lattice of submodules is a chain. M
is said to be serial if M is a direct sum of uniserial modules. A ring R
is right (left) (uni-) serial if the module RR (RR) is (uni-) serial. Finally
R is (uni-) serial if it is left and right (uni-) serial. Thus R is a serial
ring if there is a decomposition 1 = e1 + · · · + en into a sum of pairwise
orthogonal idempotents such that all right modules eiR are uniserial and all
left modules Rei are uniserial. In particular n is equal to the right and left
Goldie dimension of R.

Since every serial ring is semiperfect, hence the collection e1, . . . , en is
defined up to conjugation by an unit of R (see [16, Thm. 2.9.18]). If R is
a serial ring, Rij , i, j = 1, . . . , n will denote an abelian group eiRej . Then
Ri = Rii is a ring and Rij is an Ri–Rj-bymodule. The following is an easy
criterion how to check seriality of a given semiperfect ring.

Fact 2.1 [9, L. 1], [1, Cor.]A semiperfect ring R = (Rij) is serial iff for
every r ∈ Rij, s ∈ Rik there are u ∈ Rkj, v ∈ Rjk such that either r = su
or s = rv holds.

So the following example can be verified easily.

Example 2.2 Every artinian semisimple ring is serial so as the ring Tn(D)
of upper triangular matrices over a (skew) field D.

A semiperfect ring R with a decomposition R = e1R ⊕ . . .⊕ enR into a
sum of local modules is called basic if eiR ̸∼= ejR for i ̸= j. Every semiperfect
ring contains a basic subring S and R can be obtained from S by blocking
as in the following example:

S =

(
S1 S12

S21 S2

)
=⇒

 S1 S12 S12

S21 S2 S2

S21 S2 S2

 = R .

The following claim is an essential part of the foregoing blow-up con-
struction.

Lemma 2.3 Let R be an artinian uniserial ring with the Jacobson radical
J. Then

S =


R R . . . R
J R . . . R
...

...
. . .

...
J J . . . R
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is a basic indecomposable artinian serial ring.

Proof. If ei is the diagonal matrix unit eii, then all rings Si = eiSei = R
are local, hence R is semiperfect. The seriality follows easily by using Fact
2.1. Also by [5, L. 5.5] a serial ring is artinian iff all the diagonal rings are
artinian. S is basic since SijSji = J ⊂ R = Si for all i ̸= j. 2

So we are going to introduce B. Müller’s “blow–up” construction. Let
R = (Rij) be an (artinian) serial ring. Then S is a “blow–up” of R if it is
obtained from R by 1) blocking some diagonal component Ri and then 2)
replacing this block by triangular matrices over Ri with Ji = J(Ri) every-
where downward the main diagonal. The following example illustrates this
concept: (

R1 R12

R21 R2

)
=⇒


R1 R1 R1 R12

J1 R1 R1 R12

J1 J1 R1 R12

R21 R21 R21 R2


Similarly to Lemma 2.3 we obtain that S is an artinian serial ring which

is basic if R does.
For a module M , Gd(M) will denote its Goldie dimension. Since for a

serial ring R, Gd(RR) = Gd(RR) we will write Gd(R) instead. Let M be a
right module over a ring R, m ∈ M . Put ann(m)(R) = {r ∈ R | mr = 0}
which is a right ideal of R. To distinquish a side, we will write ann(S)(m)
if M is a left S-module.

A ring R is called quasi–Frobenius (QF) if it is (left and right) artinian
and (left and right) self–injective.

3 A quiver

Let R = (Rij) be a basic artinian serial ring with a collection of indecompos-
able orthogonal idempotents e1, . . . , en. Since every module eiR is uniserial,
its Jacobson radical J(eiR) is principal. We put i ; j if J(eiR) = rR for
some 0 ̸= r ∈ Rij ; i, j = 1, . . . , n. The obtained direct graph Γ(R) is called
a quiver of R. For an arbitrary serial ring R we define a quiver of R as the
quiver of its basic subring. The following lemma shows that the shape of
this graph is very special.

Lemma 3.1 For every basic artinian serial ring R its quiver Γ(R) is a
disjunct union of circles and lines. Moreover, R is indecomposable iff Γ(R)
is connected, thus is either a circle or a line.
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Proof. For the former claim it suffices to prove that every point i is a
source of at most one arrow and a sink of at most one arrow. By the way
of contrary suppose that i ; j, k for j ̸= k, hence J(eiR) = rR = sR for
0 ̸= r ∈ Rij , 0 ̸= s ∈ Rik. Since eiR is an uniserial module, we may assume
that s ∈ rR, hence s = rt for t ∈ Rjk. Since j ̸= k and R is basic, hence
t ∈ J(R) which implies r ∈ J2(R), a contradiction. Similarly j, k ; i yields
j = k.

For the latter statement R is decomposable iff there is a partition of
{1, . . . , n} in two parts such that Rij = Rji = 0 for i, j being in different
parts. Since i ; j clearly implies Rij ̸= 0, hence Γ(R) is connected yields
that R is indecomposable.

Supposing that Γ(R) is not connected let us choose i, j from distinct
components of Γ(R) and 0 ̸= r ∈ Rij , r ∈ Jm(R), where one may assume
that m is the least between elements with this property. In particular,
J(eiR) ̸= 0, hence J(eiR) = sR for 0 ̸= s ∈ Rik. Therefore i ; k yields
r = st for t ∈ Rkj and t /∈ Jm(R), a contradiction. 2

Note that an artinian serial ring R has the same quiver as R/ J2(R). If
0 ̸= r ∈ Rij is such that rR = J(eiR), we will say that r defines the arrow
i ; j. Then clearly Rr = J(Rej), hence r defines the arrow j ; i in the
left quiver of R.

Also i is a source for no arrow in Γ(R) iff eiR is a simple (projective)
module. For instance if the quiver of R is a point, then all modules eiR are
simple and isomorphic, hence R is an artinian simple ring, which corresponds
to the case 1) in the above classification by Eisenbud and Griffith. If the
quiver of R is a loop, a basic subring of R is uniserial and not a skew field,
hence R is a full matrix ring over an uniserial ring (case 2) in the above
classification). The rest shapes of the quiver are 3) a line with at least two
points and 4) a circle with at least to points. To analyze them the following
general construction will be useful.

Lemma 3.2 Let M be an S–R-bymodule and m ∈ M such that mR = Sm.
Then ann(S)(m), ann(m)(R) are two–sided ideals and there is a natural
isomorphism of rings S/ann(S)(m) ∼= R/ann(m)(R).

Proof. ann(m)(R) is cleary a right ideal in R. Suppose that mr = 0 for
some r ∈ R and u ∈ R. Then mu = sm for some s ∈ S, hence mur =
smr = 0 and ur ∈ R. Similarly ann(S)(m) is an ideal in S. Then the rule
mr = sm clearly defines the required isomorphism. 2
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The modelling situation where the Lemma 3.2 will be applied is the
following. Let R = (Rij) be a basic artinian serial ring and

S =


R1 . . . R1,n−2 R1,n−1 R1,n−1

R21 . . . R2,n−2 R2,n−1 R2,n−1
...

. . .
...

...
...

Rn−1,1 . . . Rn−1,n−2 Rn−1 Rn−1

Rn−1,1 . . . Rn−1,n−2 J(Rn−1) Rn−1


which is a blow–up of a (basic artinian serial) ring R|n−1 = (Rij)1≤i,j≤n−1.
Suppose that z ∈ Rn−1,n defines the arrow n− 1 ; n. Let

Z =


1 . . . 0 0
...

. . .
...

...
0 . . . 1 0
0 . . . 0 z


be an element of S–R-bymodule

R1 . . . R1,n−1 R1,n
...

. . .
...

...
Rn−1,1 . . . Rn−1 Rn−1,n

Rn−1,1 . . . Rn−1 Rn−1,n


Then we obtain

ZR =


R1 . . . R1,n−1 R1n
...

. . .
...

...
Rn−1,1 . . . Rn−1 Rn−1,n

zRn1 . . . zRn,n−1 zRn

 =

=


R1 . . . R1,n−1 R1n
...

. . .
...

...
Rn−1,1 . . . Rn−1 Rn−1,n

Rn−1,1 . . . J(Rn−1) Rn−1,n

 =

=


R1 . . . R1,n−1 R1,n−1z
...

. . .
...

...
Rn−1,1 . . . Rn−1 Rn−1z
Rn−1,1 . . . J(Rn−1) Rn−1z

 = SZ
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Indeed since Rn−1,i ⊆ J(en−1R) = zR for i ̸= n − 1, hence zRni = Rn−1,i.
Similarly zRn,n−1 = J(Rn−1). Note that ann(Z)(R) = ann(z)(enR) and
ann(S)(Z) = ann(R|n−1en−1)(z). Thus by Lemma 3.2 we obtain an isomor-
phism

S/ann(R|n−1en−1)(z) ∼= R/ann(z)(enR) . (1)

4 A line quiver

Let R be an indecomposable artinian serial ring whose quiver is a line with
at least two points. We may assume that R is basic and arrange the idem-
potents such that 1 ; 2 ; . . . ; n, hence the unique simple projective
R-module is enR.

Theorem 4.1 (see Murase [10] or Fuller [4, Thm. 32.7])Every basic inde-
composable artinian serial ring R with a line quiver and of Goldie dimension
n is a homomorphic image of a ring Tn(D) over a skew field D.

Proof. Let ri ∈ Ri,i+1 for i = 1, . . . , n − 1 define the arrow i ; i + 1 and
z = rn−1. By the construction of the previous section R/ann(z)(enR) ∼=
S/ann(R|n−1en−1)(z), where S is a blow–up of R|n−1. We prove that
ann(z)(enR) = 0. Every element of Rni defines by left multiplication a
homomorphism eiR → enR. Since enR is a simple projective module, hence
Rni = 0 for i < n and Rn is a skew field, which yields the desired.

Thus R is a homomorphic image of S. Additionally R|n−1 is clearly a
basic indecomposable artinian serial ring with the quiver 1 ; . . . ; n − 1,
where the arrow i → i+ 1 is defined by ri, i < n− 1. Then as above Rn−1

is a skew field, hence the result follows by induction. 2

Note that the homomorphic images of Tn(D) are easily described (see
[2]). What follows is the complete description of indecomposable artinian
serial rings with a line quiver.

Corollary 4.2 Every indecomposable artinian serial ring with a line quiver
is a homomorphic image of a blocked upper triangular matrix ring over a
skew field.

Thus we are able to verify the following theorem by Goldie.

Theorem 4.3 ([6, Thm. 8.11])Every indecomposable nonsingular artinian
serial ring is isomorphic to a blocked upper triangular matrix ring over a
skew field.
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Proof. We may assume that R is basic and prove that R ∼= Tn(D). Clearly
R has a line quiver. Indeed otherwise let ri ∈ Ri,i+1 define the arrow i ;
i + 1, i < n and rn defines the arrow n ; 1. Myltiplying along the circle
r1 · r2, r1 · r2 · r3, . . . , we find 0 ̸= r ∈ Rij , 0 ̸= s ∈ Rjk such that rs = 0,
which is impossible since R is nonsingular.

Following to the proof of Theorem 4.1 by nonsingularity we obtain
ann(R|n−1en−1)(z) = 0 in (1), hence R ∼= S which yields the desired. 2

5 A circle quiver

Let R be a basic serial ring with a circle quiver. The idempotents of R can
be arranged such that 1 ; 2 ; . . . ; n ; 1. Let us define the (right)
Kuppisch series of R as the sequence (c1, . . . , cn), where ci is the length of
eiR. Let ri ∈ Ri,i+1, i < n define the arrow i ; i + 1 and rn defines the
arrow n ; 1. Clearly ci is the largest k such that the product ri · . . . · ri+k−2

is nonzero. What immediately follows is

Remark 5.1 Let R be a basic artinian serial ring with a circle quiver and
the right Kuppisch series (c1, . . . , cn). Then 1) ci ≥ 2 for every i ; 2) ci+1 ≥
ci − 1 for i < n and c1 ≥ cn − 1.

It follows that |ci − cj | < n for all i, j and this series is either constant or
ck+1 = ck − 1 for some k.

Note that the Kuppisch series can be defined similarly also for artinian
serial ring with a line quiver. For instance for a ring Tn(D) its right Kuppisch
series is (n, n − 1, . . . , 1) and the left Kuppisch series is (1, 2, . . . , n). Also
let ZZ4 be the factor of integers ZZ by the ideal 4ZZ. Then the ring

R =

(
ZZ4 ZZ4

2ZZ4 ZZ4

)

is basic artinian serial with a circle quiver 1 ; 2 ; 1 and the right Kuppisch
series (4, 3). Indeed R is finite, hence artinian and R is serial by Lemma
2.3. Clearly J(e1R) = r1R where r1 = e12 and J(e2R) = r2R for r2 = 2 · e21.
Thus r1 · r2 · r1 = 2e12 ̸= 0 and r1r2r1r2 = 0, hence the length of e1R is 4.
Similarly r2r1 = 2e2 ̸= 0 and r2r1r2 = 0.

The following fact characterizes serial QF-rings in terms of their Kup-
pisch series.
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Lemma 5.2 ([10, Thm. 1.9])A basic artinian serial ring with a circle quiver
is QF iff its (right) Kuppisch series is constant.

Our next aim is to lift serial rings under consideration to serial QF-rings.

Theorem 5.3 Let R be a basic artinian serial ring with a circle quiver.
Then R is a homomorphic image of a ring S of the same Goldie dimension
which is obtained from a basic indecomposable serial QF-ring by finite many
blow–ups.

Proof. By Remark 5.1 one may assume that cn = cn−1 − 1 where n =
Gd(R). By the construction of Section 3, we obtain the isomorphism (1).
Check that ann(z)(enR) = 0. Indeed otherwise rn−1s = 0 for some 0 ̸= s ∈
enR. Decomposing s along the circle we may take s = rn · r1 · . . . · ri, where
the index i is defined modulo n if this product is too long. Since s ̸= 0,
hence i + 1 < cn. But because rn−1s = 0, hence i + 2 ≥ cn−1 which yields
cn > i+ 1 ≥ cn−1 − 1 = cn, a contradiction.

Thus R is a homomorphic image of a ring S, Gd(S) = n, which is a
blow–up of R|n−1. Clearly R|n−1 is a basic artinian serial ring whose quiver
1 ; . . . ; n−2 ; n−1 ; 1 is defined by the elements r1, . . . , rn−2, rn−1 ·rn.
Now the proof can be finished by an easy induction. 2

Note that the homomorphic images of a given artinian serial ring can
be easily described in terms of its Kuppisch series. Thus the structure of
a basic artinian serial ring with a circle quiver can be determined by the
structure of its QF “cover”. Let us introduce the useful construction (cp.
Fuller [4]).

For m,n ≥ 2 let us define a semigroup G = G(m,n) with zero 0. The
elements of G are 0, e1, . . . , en and the words w = ri · ri+1 · . . . · rj of length
≤ m − 1 where the indices are defined modulo n. The multiplication table
is given by 1) ek · el = 0 for k ̸= l and ek · ek = ek ; 2) ek ·w = w if k = i and
0 otherwise ; 3) wel = w if l = j and 0 otherwise ; 4) if v = rk · rk+1 · . . . · rl
then w · v = wv if j = k and the length of wv is less then m, and wv = 0
otherwise. It is not difficult to prove that G is an (associative) semigroup.

Let us write m = kn + l, l < n and let V be an artinian uniserial ring
with the Jacobson radical J, Jk ̸= 0, Jk+1 = 0 and J = pV = V p for
p ∈ V . We consider the semigroup ring V G, where vg = gv for every v ∈ V ,
g ∈ G with the additional relations: if k ≥ 1 then for every i = 1, . . . , n put
ri · ri+1 · . . . · ri−1 = p (the length of this word is n). Thus every element of
the obtained ring S can be uniquely written as r · w, where r ∈ V \ J and
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w = ri · . . . · rj has a length at most m− 1, and similarly in the form v · t for
t ∈ V \J. It follows that S is an artinian serial ring with the right Kuppisch
series (m, . . . ,m), hence is a QF-ring. For instance if k = 0, then V is a
(skew) field D and we get that S is the usual semigroup ring DG.

The following theorem describes “almost all” serial QF-rings as semi-
group rings.

Proposition 5.4 Let R be a basic indecomposable QF serial ring of Goldie
dimension n with the constant Kuppisch series (m, . . . ,m) where m = kn+l,
1 ̸= l < n. Then R is isomorphic to the just described ring S.

Proof. Let ri, i = 1, . . . , n− 1 define the arrow i ; i+1 and rn defines the
arrow n ; 1. The equality Riri = riRi,i+1 yields the isomorphism of rings
Ri/ann(Ri)(ri) = Ri+1/ann(ri)(Ri+1). We prove that both annihilators are
zero. Indeed otherwise by symmetry ris = 0 for some 0 ̸= s ∈ Ri+1 where
we may assume that s = ri+1 · . . . · ri. Since s ̸= 0, hence the length of the
last word is less then m, hence is equal to m − 1, since ris = 0. Thus n
divides m− 1, a contradiction.

Now all the rings Ri can be identified as in [4, p. 62]. Thus R has the
desired structure. 2

It follows that if l ̸= 1, an indecomposable basic serial QF-ring (so as
its indecomposable factors) is uniquely determined by three datas: 1) the
Goldie dimension n; 2) the right Kuppisch series (m, . . . ,m), m = kn + l,
l < n and 3) the diagonal ring V , which is an artinian uniserial ring with
the Jacobson radical J such that Jk+1 = 0. Moreover all the diagonal rings
of R are isomorphic. The following example shows that is not the case if
m ≡ 1 (mod n).

Example 5.5 Let R be a ring(
ZZ4 ZZ2

ZZ2 ZZ2[x]/x
2

)
where the R1-R2 bymodule structure on the abelian groups R12 = ZZ2 is
given by 2 · e12 = e12 · x = 0, similarly for R21 = ZZ2, and e12 · e21 = 2,
e21 · e12 = x. Then R is a basic serial QF-ring with a quiver 1 ; 2 ; 1
and the Kuppisch series (3, 3). Moreover R is not a factor of any hereditary
noetherian prime ring.

Proof. It can be easily checked using Fact 2.1 that R is an artinian serial
ring. Clearly e12 defines the arrow 1 ; 2 and e21 realizes the arrow 2 ; 1.
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Since e12 · e21 = 2 ̸= 0 and e12 · e21 · e12 = 2 · e12 = 0, hence the length of
e1R is 3 and similarly the length of e2R is 3. Also the diagonal rings ZZ4

and ZZ2[x]/x
2 are not isomorphic.

Suppose that R is a homomorphic image of a hereditary noetherian prime
ring S. We may assume that S is indecomposable, hence by [15] it is obtained
by blocking from the blow-ups of an artinian uniserial ring V . All the
diagonal rings Ri are isomorphic to the factors of V . Since R1 and R2 have
the same length, hence they should be isomorphic, a contradiction. 2

6 d-rings

Let R be a basic indecomposable artinian serial ring of Goldie dimension
n. We say that R is a d-ring if it has the right Kuppisch series (m,m −
1, . . . ,m − n + 1), m ≥ n. If m = n then the right Kuppisch series of R is
(n, n − 1, . . . , 1), hence R ∼= Tn(D) by Section 4. Otherwise R has a circle
quiver 1 ; 2 ; . . . ; n ; 1. For instance we have seen an example of
a d-ring with the right Kuppisch series (4, 3). Note also that Murase [12]
considered so called “quasi–matrix” rings over a (skew) field k. A typical
example is given by a ring

S =


α11 α12 α13 α14

0 α22 α23 α24

0 0 α11 α12

0 0 0 α22

 , αi ∈ k (2)

It can be easily calculated that S is an artinian serial ring of Goldie dimen-
sion 2 (e11 and e22 are basic idempotents) with the right Kuppisch series
(4, 3). Hence S is a d-ring. Similarly every Murase’s quasi–matrix ring is a
homomorphic image of a d-ring.

Firstly we consider the case of Goldie dimension 2. Thus the right Kup-
pisch series of R is (m,m − 1) and its structure essentially depends on
whether m is odd or even.

Lemma 6.1 Let R be a basic artinian serial ring with a circle quiver and
the right Kuppisch series (2k, 2k − 1), k ≥ 2. Then the left Kuppisch series
of R is (2k − 1, 2k) and R is isomorphic to the ring(

V V
J V

)
,
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where V is an uniserial ring with the Jacobson radical J such that Jk−1 ̸= 0
and Jk = 0.

Proof. Let r1 ∈ R12 define the arrow 1 ; 2 and r2 ∈ R21 defines the arrow
2 ; 1. We have (r1r2)

k−1r1 ̸= 0 and (r2r1)
k−1r2 = 0. It can be easily

calculated that the left Kuppisch series of R is (2k − 1, 2k). Let us repeat
the construction of Section 3 getting that S/ann(R1)(r1) ∼= R/ann(r1)(e2R),
where S is the blow–up of R1. Since c2 = c1 − 1 similarly to the proof
of Theorem 5.3 we obtain ann(r1)(e2R) = 0. Also ann(R1)(r1) = 0 by
symmetry. The Jacobson radical of R1 is generated by r = r1 · r2 and
rk−1 ̸= 0, rk = 0 which yields the desired. 2

Lemma 6.2 Let R be a basic artinian serial ring with a circle quiver and
the right Kuppisch series (2k + 1, 2k), k ≥ 1. Then the left Kuppisch series
of R is (2k + 1, 2k) and R is isomorphic to the ring(

V V
J V

)
, factorized by

(
0 Jk

0 Jk

)
,

where V is an uniserial ring with the Jacobson radical J such that Jk ̸= 0
and Jk+1 = 0.

Proof. Let r1 ∈ R12 define the arrow 1 ; 2 and r2 ∈ R21 defines the arrow
2 ; 1. Thus (r1r2)

k ̸= 0 and (r2r1)
k = 0. Repeating the proof of preceding

Lemma we get ann(r1)(e2R) = 0. But now ann(R1)(r1) = R1(r1r2)
k =

J(R1)
k which yields the desired isomorphism. 2

Now let us consider the general case.

Theorem 6.3 Let R be a basic artinian serial ring with the circle quiver and
the right Kuppisch series (m,m− 1, . . . ,m−n+1), m−n ≥ 1. Then either
R is a blow–up of an uniserial ring (see Lemma 2.3) or it is isomorphic to
the ring 

V . . . V V/ Jk . . . V/ Jk

...
. . .

...
...

. . .
...

J . . . V V/ Jk . . . V/ Jk

J . . . J V/ Jk . . . V/ Jk

...
. . .

...
...

. . .
...

J . . . J J / Jk . . . V/ Jk


,

where V is an uniserial ring with the Jacobson radical J such that Jk ̸= 0
and Jk+1 = 0.
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Proof. Let ri defines the arrow i ; i + 1, i < n and rn defines the arrow
n ; 1. Then r1 · . . . · rm−1 ̸= 0 and rn · r1 · . . . · ri = 0 where the length
of this word is m − n + 1. Let us write the right Kuppisch series for R as
(m, . . . , kn − 1 | kn, . . . ,m − n + 1). The direct calculation shows that the
left Kuppisch series for R is (kn − 1, . . . ,m | m − n + 1, . . . , kn), i.e. it is
obtained by the inversion of two pieces of the right Kuppisch series. For
instance if the right Kuppisch series of R is (12, 11 | 10, 9, 8) then its left
Kuppisch series is (11, 12 | 8, 9, 10).

Assume that the right hand part of the right Kuppisch series of R con-
tains at least two members. Then as above we can apply the construc-
tion of Section 3 getting the isomorphism (1). Since cn = cn−1 − 1 and
dn−1 = dn − 1, both annihilators in (1) are zero, hence R ∼= S. Thus R
is a blow up of R|n−1. Moreover the right Kuppisch series for R|n−1 is
(m − k, . . . , k(n − 1) − 1 | k(n − 1), . . . ,m − n − k) hence we can apply
induction on the Goldie dimension.

Similarly if the left hand part of the right Kuppisch series of R has at
least two members, we can find a blow–up structure using the element r1
instead of rn. Otherwise Gd(R) = 2, hence we can use Lemmas 6.2 and 6.1.
2

For instance if we are working at the concrete numerical example, we
obtain the chain of reductions:

(12, 11 | 10, 9, 8) → (10, 9 | 8, 7) → (8, 7 | 6) → (5 | 4) .

By Lemma 6.2 the last ring has the form(
V V
J V

)
factorized by

(
0 J2

0 J2

)
,

where V is an uniserial ring with the Jacobson radical J and J2 ̸= 0, J3 = 0.
Then R is isomorphic to the ring

V V V V V
J V V V V
J J V V V
J J J V V
J J J J V

 factorized by


0 0 J2 J2 J2

0 0 J2 J2 J2

0 0 J2 J2 J2

0 0 J2 J2 J2

0 0 J2 J2 J2


The following lemma shows that the class of d-rings is appeared very

naturally.
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Lemma 6.4 A basic indecomposable artinian serial ring R is a d-ring iff R
posseses of a faithful indecomposable module.

Proof. Let R be a d-ring with the right Kuppisch series (m, . . . ,m−n+1).
Then is can be easily shown that e1R is a faithfull module. For the converse
by Drozd–Warfield’s theorem [1, Thm.], [17, Thm. 3.3] every indecomposable
right module over R is a homomorphic image of a module eiR. Thus we
may assume that e1R is faithful. Now if ci > c1 − i + 1 then the element
ri · . . . · rj of length ci − 1 annihilates e1R, a contradiction. 2

It follows by the above numerical example that there is a right d-ring
which is not a left d-ring. The following Theorem describes left and right
d-rings.

Theorem 6.5 Let R be a basic indecomposable artinian serial ring. Then
R is blow–up of an uniserial ring (see Lemma 2.3) iff the right Kuppisch
series for R is (kn, kn− 1, . . . , kn− n+ 1), k ≥ 1.

Proof. If R is a blow–up of an uniserial ring S, then its right Kuppisch
series is clearly of desired form. For the converse we repeat the proof of
Theorem 6.3, reducing the situation to the case n = 2. Then the obtained
right Kupisch series is (2k, 2k − 1), hence the Lemma 6.1 is applied. 2

It follows from this theorem that every d-ring is uniquely determined
by its Goldie dimension and the diagonal uniserial ring V . Also every ba-
sic indecomposable serial QF-ring as described in the Proposition 5.4 is a
homomorphic image of a d-ring.

The following claim is a kind of structure theorem for artinian serial
rings.

Corollary 6.6 Every artinian serial ring R is a subdirect product of blocked
d-rings.

Proof. We may suppose that R is indecomposable and basic. Let Ii be the
annihilator of eiR and Si = R/Ii. Then ∩ i Ii = 0, hence R is a subdirect
product of the rings Si. Moreover eiR is a faithful indecomposable Si-
module, so the Lemma 6.4 can be applied. 2

Note that every matrix ring over an artinian uniserial ring is serial but
the converse is obviously not true. Nevertheless the preceding corollary and
Theorem 6.3 yield
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Corollary 6.7 If R is an artinian serial PI-ring (i.e. a ring with a polyno-
mial identity), then R lies in a variety generated by full matrix rings Mni(Ri)
over artinian uniserial PI-rings Ri.

Note that even some “bad” artinian serial QF-rings are often factors
of d-rings. For instance let k be a field of characteristic 3 and S3 be the
symmetric group. Then by [12] the group ring kS3 is isomorphic to a quasi–
matrix ring (2) factorized by

0 0 0 k
0 0 0 0
0 0 0 0
0 0 0 0


Applying Theorem 6.3, we get that kS3 is isomorphic to the ring(

V V
J V

)
factorized by

(
0 J
0 0

)
,

where V is an uniserial ring with the Jacobson radical J ̸= 0 and J2 = 0.
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