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Abstract

A Kalman Filtering algorithm which is robust to observational outliers is
developed by assuming that the measurement error may come from either one
of two normal distributions and that transition between these distribution is
governed by a Markov Chain. The state estimate is obtained as a weighted
average of the estimates from the two parallel filters where the weights are the
posterior probabilities. The impotents obtained by this Robust Kalman Filter
in the presence of outliers is demonstrated with examples.

1 Introduction

The Kalman Filter is well known recursive estimator for the state of a linear system
and has been used in the fields of forecasting and control. It has been derived as a
least squares estimator, and also, under the assumption of normality as a Bayesian
estimate. However, as with most least squares estimators, it is very sensitive to ob-
servational outliers. This sensitivity to outliers is a major draw back of the filter.
Bad observations arising from periodic sensor problems can seriously bias the filter
estimates for a considerable period of time thereafter.

In this paper a Bayesian approach is used to derive a recursive state estimator
when occasional spurious observations will arise. The new state estimator is shown to
have the structure of two parallel Kalman Filters in which the final state estimate is a
weighted average of the estimators from the two filters.

2 The State Variable Model

Consider the state variable model given by

xt = Fxt−1 + Gαt, (2.1)

zt = Hxt + εt, (2.2)

where xt is an (n × 1) vector of state variables defining the dynamic behavior of a
system, F , G are known matrices (possibly time varying) and H is a known row vector
of the appropriate dimensions. The measurement zt taken at time t is related linearly
to the states through the measurement equation (2.2). The state and observation noise
sequences {αt} and {εt} are usually assumed to be i.i.d. Gaussian random variables
with known variances σ2

α and σ2
ε respectively. Under the assumption that the system
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is observable the Kalman Filter provides a set of recursive equations for the one-step
ahead predictions of the state x̂t+1|t and the filtering state estimates x̂t|t given infor-
mation up to and including time t. However, the optimality of the estimator depends
upon knowledge of the variances σ2

α and σ2
ε at each point in time. The occurrence

of infrequent outliers can be characterized by an increase in the variance of αt (an
innovational outlier) which leads to a real change in the state of the system or in the
variance of εt (an observational outlier) which has no effects on the true state (xt), but
will have a pronounced effect on the Kalman Filter estimates. In the following section
we use a Bayesian approach to develop a robust filter to handle observational outliers.

3 Derivation of the Robust Filter

We characterize the observational outliers by replacing εt in equation (2.2) by (1 −
−it)εt + itγt, where {it, t = 0, 1, . . .} is a sequence of {0, 1} random variables following
a Markov Chain (MC). Suppose that the initial probability (π0, π1) of MC is known
and that the transition probability matrix is {qit−1,it}. γt is a Gaussian random variable
with zero mean and variance σ2

γ which is very large compared with σ2
ε . We also assume

that the conditional density p(xt−1|zt−1
0 ) is a Gaussian distribution with mean x̂t−1 and

covariance matrix Pt−1. Then

p(xt, it|zt
0) =

1∑
it−1=0

∫
p(xt−1, it−1|zt−1

0 ) · p(xt, it|xt−1, it−1, z
t−1
0 )dxt−1,

which on further simplification yields [1], [2]:

p(xt, it|zt−1
0 ) = (2π)

−
n

2
1∑

it−1=0

qit−1itkit−1

∣∣Pt|t−1

∣∣−
1

2 ×

× exp

{
−1

2
(xt − x̂t|t−1)

T P−1
t|t−1(xt − x̂t|t−1)

}
,

where qit−1it = P
{
it|it−1, z

t−1
0

}
, Pt|t−1 = FPt−1F

T + GGT σ2
α, x̂t|t−1 = Fx̂t−1,

kit−1 = P
{
it−1|zt−1

0

}
.

By Bayes theorem

p (xt, it|zt
0) =

p(xt, it|zt−1
0 ) · p(zt|xt, it, z

t−1
0 )

1∑
it=0

∫
p(xt, it|zt−1

0 )p(zt|xt, it, z
t−1
0 )dxt

=

= C · (2π)
−n
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1∑
it−1=0

qit−1,it · kit−1


 ∣∣Pt|t−1

∣∣−
1

2 ×

× exp

{
−1

2
(xt − x̂t|t−1)

T P−1
t|t−1(xt − x̂t|t−1)

}
×

×(
√

2πσit)
−1 exp

{
−1

2
(zt −Hxt)

T σ−2
it

(zt −Hxt)

}
,
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where
σ2

it = (1− it)σ
2
ε + itσ

2
γ,

C−1 =
1∑

it=0

∫
p(xt, it|zt−1

0 ) · p(zt|xt, it, z
t−1
0 )dxt.

This can be simplified

p(xt, it|zt
0) = kit(2π)

−n

2
∣∣∣P (it)

t|t

∣∣∣
−1

2 exp

{
−1

2

(
xt − x̂

(it)
t|t

)
·
(
P

(it)
t|t

)−1

·
(
xt − x̂

(it)
t|t

)}
,

where
x̂

(it)
t|t = x̂t|t−1 + R−1

it
Pt|t−1H

T (zt −Hx̂t|t−1), (3.1)

P
(it)
t|t = Pt|t−1 −R−1

it
Pt|t−1H

T HPt|t−1, (3.2)

Rit = σ2
it + HPt|t−1H

T (3.3)

and

kit = C · (√2πσit)
−1

∣∣∣P (it)
t|t

∣∣∣
1
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1∑
it−1=0

qit−1itkit−1


 ∣∣Pt|t−1

∣∣−
1

2 ×

× exp

{
−1

2
(zt −Hx̂t|t−1)

T R−1
it

(zt −Hx̂t|t−1)

}
.

(3.4)

The kit are the posterior probabilities of the current observation at time t being an
outlier (it = 1) or not being outlier (it = 0). C is a normalizing constant. Note that

the term
1∑

it−1=0

qit−1itkit−1 = Pitt is the prior probability of being in state it at time t.

Thus

p(xt|zt
0) =

1∑
it=0

kitN
(
x̂it

t|t, P
(it)
t|t

)
, (3.5)

where N
(
x̂

(it)
t|t , P

(it)
t|t

)
denotes a normal distribution with mean x̂

(it)
t|t and covariance

matrix P
(it)
t|t . For computational simplicity we approximate the posterior density (3.5)

by a single Gaussian distribution with matching moments. We write this posterior
density as

p(xt|zt
0) = N(x̂t, Pt),

where x̂t =
1∑

it=0

kit x̂
(it)
t|t , Pt =

1∑
it=0

kitP
(it)
t|t .

In the proposed robust filter (3.1) – (3.4) the gain corresponding to it is given by

Kit = R−1
it

P̂t|t−1H
T ,

where Rit is given in (3.3). Thus the state estimate is computed as a linear combina-
tion of two parallel filters having a lower and a higher gain depending on the current
observation zt.
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4 Simulation Examples

4.1 ARIMA(0,1,1) model with outliers

Consider the following special case of the system of equations given by (2.1), (2.2).

xt = xt−1 + αt, (4.1)

zt = xt + εt, (4.2)

where {αt} and {εt} and are i.i.d. Gaussian random variables with mean zero and
variances σ2

α and σ2
ε respectively. This is equivalent to an ARIMA(0,1,1) model:

∇zt = (1− θB)bt (4.3)

for θ > 0, where θ is the moving average (MA) parameter, is a backshift operator such
that Bzt = zt−1 and bt is an i.i.d. sequence of Gaussian random variables with mean
zero and variance σ2

b . The relationships among the parameters in the state model form
(4.1), (4.2) and difference equation (4.3) are given in [3] as (1− θ2)/θ = σ2

α/σ2
ε , σ2

b =
= σ2

α/(1 − θ)2. The procedure in the previous section is illustrated with time series
(4.3). The subsequent 100 observations where then considered as the sample period
and outliers were introduced at the 25th, 50th, 65th and 75th observations by adding
N(0, 1.75) random variables to them. Initially the ordinary Kalman filter (with no
outlier protection) was run with x̂0 = 17 (the first observation in the sample period).
P̂0 = 0.009, σ̂2

α = 0.009 and σ̂2
ε = 0.071. The modeling results show that the ordinary

Kalman filter estimates are sensitive to spurious observations. For example the pre-
dictions after spurious observation at t = 50 remain too high for a considerable period
of time before aligning with the data again. A similar behavior can be noticed at time
points subsequent to the other discrepant observation.

The robust filter was run assuming x̂0 = 17, P̂0 = 0.009, σ̂2
ε = 0.071, σ̂2

γ = 1.75,
π0 = 0.9, π1 = 0.1. The modeling results show that this filter is robust to observational
outliers. For example, the prediction at t = 50 and at the subsequent points do not
seem to be affected by the aberrant observation at t = 50 un like in the previous case.

In addition, the robust filter also provides the posterior probability R1 of any ob-
servation being an outlier.

4.2 ARIMA(1,1,0) model with outliers

Consider the model
(1− ϕB)(1−B)yt = αt, (4.4)

where ϕ is the autoregressive parameter and {αt} is a white noise sequence with mean
zero and variance σ2

α. Let the measurement process be defined by

zt = yt + εt, (4.5)

where {εt} is a sequence of i.i.d. Gaussian random variables with mean zero and
variance σ2

ε . For ϕ > 0 this model represents a very slowly drifting process. Predictions
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for any lead time obtained at a particular time point t = τ in this series is a linear
function of zτ and zτ−1. Thus, if there is an observational outlier at τ it strongly
influences the predictions. Thus robust Kalman Filtering and outlier detection are
quite relevant in this case.

We shall now incorporate occasional outliers by replacing εt by (1 − it)εt + itγt,
where {γt} and {it} are as defined before.A state space equivalent of this ARIMA(1,1,0)
observational outlier model can be written as

xt =

(
x1t

x2t

)
=

(
1 0
1 ϕ

)(
x1t−1

x2t−1

)
+

(
1
1

)
αt, (4.6)

zt =
(

0 1
) (

x1t

x2t

)
+ (1− it)εt + itγt,

where xt is a (2× 1) state vector. Then the state and covariance predictions at time t
can be given by

x̂t|t−1 =

(
1 0
1 ϕ

)(
x̂1t−1

x̂2t−1

)
= (x̂1t−1, x̂1t−1 + ϕx̂2t−1)

T ,

P̂t|t−1 =

(
1 0
1 ϕ

)
P̂t−1

(
1 1
0 ϕ

)
+

(
1 1
1 1

)
σ2

α,

ẑt|t−1 =
(

0 1
)
x̂t|t−1 = x̂1t−1 + ϕx̂2t−1.

A simulation study was conducted using 100 observations from the model (4.4) with
ϕ = 0.8, σα = 1, σε = 5. As in the previous example the outliers were introduced at
the points t = 25, 50, 65, 75 using a Gaussian distribution with σγ = 25. The initial
values of the states which were used to generate the series were x̂10 = 20 and x̂20 = 150
respectively. The ordinary Kalman filter was initially used to estimate the state and
to make predictions. The aberrant observations seem to have a strong influence on
the predictions. Secondly, the robust Kalman filter was run on the assumption that
P{it = 1} = 0.1. Unlike before, the predictions are not influenced in this case. Again
the four large outliers have been clearly detected.
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