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5

Analytical Methods for Heat Conduction in Composites

and Porous Media

Vladimir V. Mityushev, Ekaterina Pesetskaya, and Sergei V. Rogosin

5.1

Introduction

The goal of this chapter is to describe analytical methods applied to the study of

steady heat conduction in various types of composites and porous media. We

present several analytical formulas for the effective (macroscopic) conductivity ten-

sor which are deduced by using different approaches based on the recent results in

the theory of partial differential equations and complex analysis. The study of

effective characteristics has recently become a separate subject with its own philos-

ophy and machinery. Composites and porous media differ by geometry and by

the type of physical problems that appear. For composites, the most popular are

problems of conductivity, elasticity, elastoplasticity and thermoelasticity (e.g. Refs.

[1–4]), but for porous media, problems of fluid mechanics are mostly studied (e.g.

Refs. [5–9]).

The analytical approach to the study of heat conduction allows us to unify partly

the theory of the effective thermal properties in composite materials and porous

media. In the present chapter, pure steady conductivity problems are considered

when the filler of pores (fluid or gas) is static. Such problems are benchmarks of heat

and mass transfer problems of the mechanics of porous media [10].

The main attention throughout this chapter will be paid to analytic or constructive,
or closed form solutions to the above mentioned problems. Different interpretations

can be given to such a notion. For us to get an analytical solution means to find the

formula which contains a finite set of elementary and special functions, composi-

tions, integrals, derivatives and even series. Besides, all objects in such a formula

have to have a precisemeaning (for instance, the type of the convergence of integrals

and series should be described). Last, the domains of parameters, as well as all

functions, integrals, etc., have to be explicitly determined. It will also be shown also

that they (or their intersections, if necessary) are nonempty. This approach is slightly

nontraditional. In classic books, it is supposed that series do not form closed form

solutions, but special functions do. It leads to certain misunderstandings since not
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all special functions have integral representations.We suppose that ourmeaning of a

closed form solution could give a way to work efficiently with the mathematical

object involved in the solution formulas.

The above meaning of analytic solutions is very close to the sense of solutions

obtained by certain numerical methods. To avoid misunderstandings we will

distinguish between (pure) analytic solutions and those obtained by using certain

analytic numerical procedure. The latter will be called approximate analytic
solutions.
Among the numerical methods which can be called approximate analytical meth-

ods we have to point out the collocation method and its modifications as developed

and applied to the study of composites by Kolodziej and co-workers [11–13], the

finite element method presented in other chapters of this book, the integral equation

method, in the form developed, for example, by Lifanov [14,15], as well as the

successive approximation method and methods of decomposition, in particular,

Schwarz’s alternating method (all applied in the study of composites in Ref.

[16]). Despite the method of truncation for infinite linear algebraic systems can be

effective in numerical computations, one can hardly accept that this method yields a

‘‘closed form solution’’ as is frequently declared.

In this review, the main attention is paid to analytically exact and approximate

formulas for the effective conductivity tensor. Other important questions as bounds

[17], homogenization [1,2,17–20], coupled heat and mass transfer [5,6,10] can be

found in the cited works.

5.2

Mathematical Models for Heat Conduction

5.2.1

General

Consider the Euclidian spaceRM as a space of the spatial variable x¼ (x1, x2, . . ., xM).
UsuallyM¼ 3. Sometimes due to the symmetry of the problem under discussion it

is convenient to take M¼ 2 or M¼ 1, making corresponding changes in the equa-

tions. Let W be a domain occupied by the conducting material (composite or porous

media). One of the most important objects in the mathematical theory of steady heat

conduction is the temperature distribution T(x) and the heat flux q(x). In physics,

temperature is the measure of the energy possessed by particles (molecules, elec-

trons, etc.) per unit volume of the material. The heat flux is the heat transfer rate (in

unit of time) per unit volume. Below, the dimensions of the basic variables can be

taken in SI units. The unit for temperature is the kelvin K, for heat flux it is Jm�2s�1,

for conductivity it isWm�1K�1, where J is the joule,m is themeter, s is the second,W
is the watt.

From a mathematical point of view T(x) is a scalar field depending on the variable

x2RM, q(x)¼ (q1(x), q2(x), q3(x)) is a vector field. The equations representing depen-
dence of the flux q(x) on the temperature T(x) are called (the heat transfer) constitutive

122j 5 Analytical Methods for Heat Conduction in Composites and Porous Media
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relations. In the linear case the constitutive relation for conducting material has the

form of Fourier’s law (e.g. Ref. [21])

q ¼ �LrT ð5:1Þ

where rT is the gradient of T(x) and L is a tensor. In Cartesian coordinates

rT¼ qT
qx1

; qTqx2 ;
qT
qx3

;
� �

.

The constitutive relation (5.1) means a (local) proportionality of the flux and the

gradient of temperature distribution. In the linear case, the proportionality coefficient

L depends solely on the spatial variable x. It is the measure of the heat conduction of

the solid phase. For locally isotropicmedia,L¼lI, where I is the identity tensor. Then,
l is called the local thermal conductivity or simply the conductivity. The thermal con-

ductivity is considered as a scalar positive function l¼ l(x) for locally isotropic ma-

terials and as a tensor function for locally anisotropic materials which in Cartesian

coordinates has the form of the symmetric positively defined matrix:

L ¼ LðxÞ
l11ðxÞ l21ðxÞ l31ðxÞ
l12ðxÞ l22ðxÞ l23ðxÞ
l13ðxÞ l23ðxÞ l33ðxÞ

0B@
1CA ð5:2Þ

For L depending on the temperature, i.e., L¼L(x, T) we deal with nonlinear heat
conduction.
Sometimes the thermal resistance r is introduced as r¼l�1 (R¼L�1), where the

power �1 denotes the reciprocal whenever l is a function (the matrix inverse

whenever L is a matrix).

Assuming thepresence of sources and sinkswith intensity f (x), we get the following
relation r�q¼ f in D. If a medium does not contain sources or sinks, the heat flux

satisfies the so-called free divergence equation:

r� q ¼ 0 ð5:3Þ

or in Cartesian coordinates qq1
qx1

þ qq2
qx2

þ qq3
qx3

¼ 0

Substituting (5.3) into (5.1), we obtain the elliptic equation:

r� ðLrTÞ ¼ 0 ð5:4Þ

Laplace Equation In the case of isotropic homogeneous material, the conductivity

l(x) is a constant. Then, (5.4) becomes the Laplace equation:

r2T ¼ 0 ð5:5Þ

i.e., T is a harmonic function in D. The constitutive relation (5.1) means in this

case that the flux q(x) has a potential (in other words, the vector field q(x) is a potential

one, or the considered physical system is conservative; e.g. Refs. [22,23]).

5.2 Mathematical Models for Heat Conduction j123
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Geometry The domain D occupied by the medium is supposed to be an arbitrary

open set inRM; M ¼ 3ðor M ¼ 2Þ. Usually it is supposed thatD consists of a finite

or denumerable collection of connected components. One of the components W,

called the matrix or host material, contains other components as inclusions

or pores.

If the boundary surfaces (or curves) are simply smooth, then two continuous

families of normal vectors can be chosen. Each one generates an orientation on the

surface (on the curve). Most common is to choose an orientation generated by

outward unit normal vectors n to @ O, understanding such an orientation as positive

and an opposite orientation as a negative one. Such a definition can be extended to

domains with piecewise smooth boundaries.

The level of smoothness of the boundary can also be prescribed. For simplicity, it

is usually supposed that @ O consits of piecewise Lyapunov’s (or C1,a� (0<a� 1))

surfaces or curves. It means that they have a tangent plane (a tangent line) every-

where besides a finite number of smooth curves on a surface (finite number of

points on a curve), and the corresponding field of normal vectors is Hölder contin-

uous with respect to the spatial variable on a surface (on a curve). Therefore, corner

(wedge) points can arise on the boundary surfaces (curves). It usually brings addi-

tional difficulties to attack problems (e.g., Refs. [24–26]).

Sometimes it is important to model the conducting medium by a certain infinite

domain. Different compactifications can be applied in this case. For instance, in a 2D

situation (M¼ 2) it is convenient to understand 1 as the unique point extension of

the complex planeC (i.e. as a north pole on the Riemann sphere S2 ¼ Ĉ ¼ C[f1g)
(e.g., Ref. [27]). In this case, the point1 can be either boundary point of a domain D
or its internal point (on the sphere Ĉ). Another possibility is to consider several infinite

points.

Spaces Looking for a classical solution, we need to prescribe certain smoothness of

these solutions on the boundary. Let us recall definitions of themost standard spaces

of smooth and piecewise smooth functions on a connected subset X �RM (in

particular, on each connected component of qW).

It is said that the family CðXÞ ¼ f f : X !CðRÞ : f is continuous onXg forms a

linear space of continuous functions. For X being either a closed surface or a closed

curve, C(X) becomes a Banach space under the norm || f ||c¼ supx2X| f (x)|. The spaces
Ha(X) containing Hölder-continuous functions are introduced by the following

condition:

HaðXÞ ¼ f f 2CðXÞ : 9C > 0; j f ðx1Þ� f ðx2Þj <Cjx1�x2ja;
8 x1; x2 2X ; 0<a � 1g

(here |x1� x2| means the Euclidean distance between two points of X 2RM ).

These spaces are called Hölder spaces. They are linear subspaces of C(X) (the

following notations for them are also commonly used: Lipa(X), C 0,a). Again for

X being either a closed surface or a closed curve, HaðXÞ becomes a Banach space

124j 5 Analytical Methods for Heat Conduction in Composites and Porous Media
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with the following norm:

jj f jja ¼ jj f jjC þ sup
x1 ;x2 2X ;x1 6¼ x2

jj f ðx1Þ� f ðx2Þjj
jx1�x2ja

¼: jj f jjC þ hð f ;aÞ

For X being a nonclosed smooth surface or curve, a piecewise smooth surface or

curve one can introduce weighted Hölder spaces:

HaðX ; rÞ ¼ f f : 9 f0; f ðxÞ ¼ f0ðxÞrðxÞ; f0 2HaðXÞg

with a given weight function r (for instance, rðxÞ ¼
Qn

l¼1jx�xljbl , where bl 2R).

To introduce the spaces of differentiable functions inRM, it is convenient to use the

notion of multi-index. Let, for example, x ¼ ðx1; x2; x3Þ 2X �R3; f : X !CðRÞ.
Denote by qj f ¼ qf

qxj
the derivative of f with respect to j-th variable. The vector

k ¼ ðk1; k2; k3Þ 2Z3
þ is called multi-index, and |k|¼ k1 + k2 + k3 denotes its length. By

definition, k-th (partial) derivative of f is equal to qk f ¼ qjkj f

qxk1
1
qxk22 qxk33

. Then, Cm(X),

m2N, is a space of all functions f : X !CðRÞ such that f(x) and qkf,|k|�m, are

continuous onX. We have to note that forX being a smooth surface or a smooth curve

the derivatives can be taken only in the tangent direction to X.
The collection of Schauder spaces is defined in the following way (m2N;

0<a � 1):

Cm;aðXÞ ¼ f f 2CmðXÞ : 9C > 0; jqk f ðx1Þ�qk f ðx2Þj <Cjx1�x2ja;
8 x1; x2 2X ; jkj ¼ mg:

They are Banach spaces for X being a smooth surface or a smooth curve under the

following norms:

jj f jjm;a ¼
Xm
jkj¼0

jjqh f jjC þ
X
jkj¼m

hðqk f ;aÞ

Finally, the collection of all infinitely differentiable functions is denoted by C1ðXÞ:

C1ðXÞ ¼ f f 2CðXÞ : 8 k2Z3
þ; 8 x2X ; 9 qk f ðxÞg

It should be noted that we can consider R2 to be isometric to C. Thus, in this case

in all the above definitions the partial derivatives can be replaced by the derivatives

with respect to complex variable. These definitions are stronger than those with

partial derivatives with respect to two real variables [27].

Let G be a simple closed curve in C, X¼ int G. The set of all continuous functions
CðGÞ analytically extended into X is denoted by CAðGÞ (or CAðXÞ). It is a Banach space

under supremumnorm on cl X. Analogous definitions (under corresponding norms

in cl X) are used for the spaces Cm;a
A ðGÞ ¼ Cm;a

A ðXÞ, C1A ðGÞ ¼ C1A ðXÞ.

5.2 Mathematical Models for Heat Conduction j125
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In many problems of mathematical physics it is not sufficient to deal only with the

classical solutions corresponding to differential equations. One of the most suitable

generalizations of the above introduced spaces are the so-called Sobolev spaces (e.g.,
Ref. [28]). The main idea in the construction of these spaces is the use of the notion

of weak derivatives.
Let X �RM be an open connected set. We denote by Lp(X), 1� p <1, the set of all

(Lebesgue-) measurable functions f : X !CðRÞ such that

jj f jj p ¼
ð
X
j f ðxÞj pdx

� �1= p

<1

It is a Banach space with respect to the norm ||f||p. It is said that X 0 �X �RM is a

strictly interior subdomain of X, if �X 0 �X (the corresponding notation is X0 ��X).
The space Lp;locðXÞ, 1� p <1, is the set of all (Lebesgue-) measurable functions

f : X !CðRÞ such that
Ð
X 0 jFðxÞj pdx<1 for any bounded strictly interior domain

X 0 ��X . Denote also by C10 ðXÞ the class of all compactly supported infinitely

differentiable functions f : X !CðRÞ.
Let now k be a multi-index, the functions f, g2 L1,loc(X), and the following relation

be satisfied:ð
X
f ðxÞqkhðxÞdx ¼ ð�1Þjkj

ð
X
gðxÞhðxÞdx

for all functions h2C10 ðXÞ. Then, g is called the weak derivative of f. It is denoted by

the same symbol as before, namely g¼ qkf.
The Sobolev spaceWs,p(X), 1 � p <1; s2Zþ, is the set of all functions f2 Lp(X)

for which there exist weak derivatives qkf for any k, |k| < s, such that qkf2 Lp(X),
8|k|� s. Endowed by the norm jj f jjs; p;X ¼

P
jkj�s jjq

k f jj p, Ws,p(X) becomes a

Banach space. In the special case p¼ 2, the space Ws,2(X) is denoted by Hs(X). This
space is a Hilbert space with the inner product defined by the relation

h f ; gis;X ¼
X
jkj�s

hqk f ; qkgiL2ðXÞ ¼
X
kj�s

ð
X

qk f ðxÞqkgðxÞdx

The set C10 ðXÞ is a dense subset ofH1ðRMÞ. If X 6¼RM then the closure of C1C ðXÞ
in H1-norm is a subspace of H1(X) denoted by H1

0ðXÞ.
The set of all linear continuous functional H1

0ðXÞ with respect to inner form in

H1
0ðXÞ:

h f ; gi1;X ¼
ð
X

f ðxÞgðxÞdxþ
X
jkj¼1

ð
X

qk f ðxÞqkgðxÞdx

0@ 1A
is denoted by H�1(X).
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Let Q be a parallelepiped in RM, M¼ 2,3, then Cm;a
A; perðqQÞ ¼ Cm;a

A; perðQÞ,
C1A; perðqQÞ ¼ C1A; perðQÞ, Ws; p

perðQÞ, Hs
perðQÞ are subspaces of Cm;a

A ðQÞ, C1A ðQÞ,
Ws; pðQÞ, Hs(Q), respectively, containing those functions which possess periodic

extension from the set Q to the space RM.

5.2.2

Boundary Value Problems

Let us present different types of boundary value problem for heat conduction in com-

posites and porous media (i.e. boundary value problems for equations (5.4) and 5.5)).

To be more precise, we formulate these problems in the case of composites

consisting of the matrix (which is a multiply connected domain O in R2 with outer

boundary curve G) and of n inclusions Dk, k¼ 1, . . ., n, encircled by smooth closed

surfaces (curves) Lk¼ qDk. It is convenient to use the notation L(x) for the conduc-
tivity tensor for the material occupied by the host domain W, and Lk(x), k¼ 1, . . ., n,
for the conductivity tensors for the material occupied by the corresponding inclu-

sions (see Section 5.2.1).

We suppose that either M¼ 3 or M¼ 2, just by making corresponding remarks

when these situations differ essentially. According to the above presented descrip-

tion of the orientation on the boundary of O, we will denote by T(t) the boundary

values of the temperature distribution on G, and the boundary limits on Lk of the
temperature from the domain O and domains Dk by Tþ(t), T�

k ðtÞ, respectively:

TðtÞ ¼ lim
x! t2G; x2W

TðxÞ; TþðtÞ ¼ lim
x! t2 Lk; x2W

TðxÞ; k ¼ 1; . . .; n;

T�
k ðtÞ ¼ lim

x! t2 Lk ; x2Dk

TðxÞ

The given temperature distribution f(t) on the outer boundary G leads to the

Dirichlet condition on G:

TðtÞ ¼ f ðtÞ; t2G ð5:6Þ

If the outer boundary constitutes the ideal thermal isolator (i.e. there is no heat

exchange between the composite and themedium outside of it), then we arrive at the

homogeneous Neumann condition

qT
qn

ðtÞ ¼ 0; t2G ð5:7Þ

If there is heat transfer through the outer boundary when the normal heat flux

q�n is known at the outer surface, then condition (5.7) should be replaced by a more

complicated one (see Eq. (5.1))

LrT �nðtÞ ¼ gðtÞ; t2G ð5:8Þ

Here, LrT denotes that the matrix L is multiplied by the vector rL. Further, the
scalar product of the vectors LrT and n is calculated.

5.2 Mathematical Models for Heat Conduction j127
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Instead of Eq. (5.8), the heat transfer satisfying Newton’s law can be considered at

the boundary

l
qT
qn

ðtÞ þ gTðtÞ ¼ hðtÞ; t2G ð5:9Þ

It is also called the third type boundary value problem.

5.2.3

Conjugation Problem

Other types of condition arise on internal components of the boundary of O, i.e. on
the matrix–inclusions (host–pores) interface. The most natural are continuity of the

temperature and of the heat flux. For simplicity, hereafter the scalar conductivity is

considered. Then, they have the following form

TþðtÞ ¼ T�
k ðtÞ; l

qTþ

qn
ðtÞ ¼ lk

qT�
k

qn
ðtÞ; t2 Lkðk ¼ 1; . . .; nÞ ð5:10Þ

They are known as the perfect contact or transmission conditions. It is also natural to

assume that the temperature distribution and the normal heat flux have jumps along

a part of the matrix–inclusions interface. In this case, conditions (5.10) have the

following form:

TþðtÞ�T�
k ðtÞ ¼ hkðtÞ; l

qTþ

qn
ðtÞ�lk

qT�
k

qn
ðtÞ ¼ gkðtÞ; t2 Lkðk ¼ 1; . . .; nÞ

ð5:11Þ

where hk, gk are given functions on Lk.
If at least a part of the matrix–inclusions interface consists of poorly conducting

material then we have to replace the first series of the above conditions by a more

complicated one, namely, we have the following problem:

l
qTþ

qn
ðtÞ þ gkðTþðtÞ�T�

k ðtÞÞ ¼ 0; l
qTþ

qn
ðtÞ ¼ lk

qT�
k

qn
ðtÞ;

t2 Lkðk ¼ 1; . . .; nÞ ð5:12Þ

The coefficients g�1
k introduced in Eq. (5.12) and known as the Kapitza resistances

[3,29]. The limit cases gk¼ 0, and gk¼1 were discussed in Ref. [16].

A special problem can be also considered, namely with the boundary conditions

given on the exterior boundary and the domains Dk occupied by an ideal conductor

(lk¼1). In this case, we arrive at the modified Dirichlet problem [30]

TðtÞ ¼ tk; t2 Lk ð5:13Þ

where tk are undetermined constants which have to be found in the solution to the

problem.
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5.2.4

Complex Potentials

The aim of this subsection is to rewrite equations as well as boundary value pro-

blems for heat conduction in composites (or in porous media) in terms of complex

analysis. Thus, we have studied here only the two-dimensional situation (M¼ 2)

considering the corresponding domains as domains on the complex planeC. In this

case, it is supposed that the heat flux is spreading in a direction orthogonal to the

cylinder in which parallel cylindrical inclusions are implemented. The base of

the cylinder is a multiply connected domain W, and the bases of the inclusions are

domains Dk. There is also another statement of the 2D problem when a thick plate

with isolated sides is considered.

First, we consider the limit cases whenO is occupied by a conductingmaterial and

on the boundary of which one of the boundary conditions (5.6), (5.8) and (5.9) are

given. Consider the Dirichlet problem (5.6). It is known that each harmonic function

in a simply connected domain is the real part of a complex potential. If a function

T(x, y) is harmonic in a multiply connected domain O then it can be expressed as

TðzÞ ¼ Re FðzÞ þ
Xn
k¼1

Aklnðz�zkÞ
" #

; z ¼ x1 þ ix2 2W ð5:14Þ

according to the decomposition theorem [16]. Here, the functionF(z) is analytic and
single-valued in W, and Ak are real numbers. If we assume that12W, Dk (k¼ 1, 2,

. . ., n) are connected components of the complement of W to C, and zk are points in
Dk, then the connectivity of W is equal to n� 1 and

Xn
k¼1

Ak ¼ 0 ð5:15Þ

Substituting T(z) from Eq. (5.14) in Eq. (5.6), we arrive at the boundary value

problem with respect to F(z). The constants Ak have also to be determined. One

can find a discussion of this problem for multiply connected domains in Ref. [30]

and a complete solution to this problem for any circular multiply connected domain

in Ref. [16]. A similar argument can be applied to the problems (5.7) and (5.9).

Consider now themodified Dirichlet problem (5.13). In this case, instead of (5.14)

we have T(z)¼Re F(z). However, the undetermined constants tk are included in the

boundary condition

ReFðtÞ ¼ tk; t2 Lk ðk ¼ 1; 2; . . .; nÞ

We also suppose (again for simplicity) that the materials inside matrix and in-

clusions are isotropic and homogeneous, whichmeans the constancy of conductivity

coefficients l, lk, k¼ 1, . . ., n. Therefore, the temperature T is a harmonic function

in the domains O and Dk, k¼ 1, . . ., n (i.e. satisfies in these domains the Laplace

equation 5.5).
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Let T, and Tk be temperature distributions in O and Dk, k¼ 1, . . ., n, respectively,
continuously differentiable up to the boundaries of these domains satisfying

Eq. (5.5). Suppose that the perfect contact relations (5.10) are valid on each curve

Lk¼ @Dk, k¼ 1, . . ., n. Then, one can introduce functions

jðzÞ ¼ TðzÞ þ iVðzÞ; z2W; jkðzÞ ¼
lþ lk
2l

ðTkðzÞ þ iVkðzÞÞ;

z2Dk; k ¼ 1; . . .; n ð5:16Þ

which are analytic in W, Dk, respectively, continuously differentiable in the closures

of the considered domains. In fact (e.g. Ref. [22]), the function j(z) is in general a

multivalued analytic function since W is a multiply connected domain. But in our

case, T(z) possesses [31] a unique harmonic extension up to the function, harmonic

in a simply connecteddomainD ¼ W
[n
k¼1

Lk
[n
k¼1

Dk due to thefirst relations inEq. (5.10).

Therefore, due to the uniqueness of analytic continuation j(z) is a single-valued

analytic function inW as the restriction of the corresponding function defined onD.
In order to represent the boundary conditions (5.10) in the complex form, we

write the normal and tangent derivatives on a fixed curve Lk:

q
qn

¼ n1
q
qx1

þ n2
q
qx2

;
q
qs

¼ �n2
q
qx1

þ n1
q
qx2

ð5:17Þ

where the normal vector n is identified with the complex number, n¼ n1þ in2, the
tangent vector s¼ n2� in1, and z¼ x1 + ix2. By applying the second operator of

Eq. (5.17) to the first condition of (5.10), we obtain

�n2
qTþ

qx1
þ n1

qTþ

qx2
¼ �n2

qT�
k

qx1
þ n1

qT�
k

qx2
ð5:18Þ

The second condition of Eq. (5.10) can be rewritten in a similar way

ln1
qTþ

qx1
þ ln2

qTþ

qx2
¼ lkn1

qT�
k

qx1
þ lkn2

qT�
k

qx2
ð5:19Þ

We introduce new complex potentials in the domains W and Dk, respectively,

y ¼ qj
qz

¼ qT
qx1

�i
qT
qx2

; yk ¼
lk þ l
2l

qjk

qz

� �
¼ lk þ l

2l
qTk

qx1
�i

qTk

qx2

� �
ð5:20Þ

Then, substituting these relations into Eqs. (5.18) and (5.19) and excluding yþ, we

arrive at the following conjugation condition:

yþðtÞ ¼ y�
k ðtÞ þ rkn

2y�
k ðtÞ; t2 Lk ð5:21Þ

where

rk ¼
lk�l
lk þ l

ð5:22Þ
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is a contrast parameter introduced by Bergman [32,33]. Integrating Eq. (5.21) along

Lk with constant of integration equal to zero [16], we obtain the following boundary

value problem for analytic functions in amultiply connected domain, namely, for the

complex potentials j,jk, k¼ 1, . . .,n:

jþðtÞ ¼ j�
k ðtÞ�rkj�

k ðtÞ; t2 Lk ð5:23Þ

This problem is a special case of so-called R-linear conjugation problem (Markush-

evich’s problem) (see Refs. [34,35] for the description of qualitative results concern-

ing the solvability of R-linear conjugation problem with arbitrary coefficients).

If at least one of the first conditions in Eq. (5.10) is replaced by a non-zero jump

condition, i.e. we have Eq. (5.11), then one can proceed in a similar way as before.We

introduce the complex potentials by formulas (5.16). If hk are smooth enough, e.g.

hk 2C1;aðLkÞ, then one can find (single-valued) analytic in Dk functions h�k ðzÞ satis-
fying the following boundary conditions (the so-called Schwarz boundary value

problem):

Reh�k ðtÞ ¼ hkðtÞ; t2 Lk ð5:24Þ

Then, the first conditions of Eq. (5.11) can be rewritten in the form TþðtÞ�~T�
k ðtÞ ¼ 0;

t2 Lk; k ¼ 1; . . .; n; where ~T�
k ðzÞ ¼ T�

k ðzÞ þ Reh�k ðzÞ; z2Dk. A similar argu-

ment can be applied to the second condition (5.11). Thus, the last relations give the

single-valuedness of the potential j+(z) in W. Then by using the above introduced

complex potentials (5.16), we deduce that the only difference is that at least one of the

Eqs. (5.18) is in this case inhomogeneous. As a result, we will have the following

boundary value problemwithnon-zero inhomogeneous term ck(t) on at least one curve
Lk:

jþðtÞ ¼ j�
k ðtÞ�rkj�

k ðtÞ þ ckðtÞ; t2 Lk ð5:25Þ

Exact calculation of the inhomogeneous term can be easily done. It does not have

much influence on further analysis.

Application of the same arguments to Eq. (5.12) yields an R-linear conjugation

problem with derivatives. Let us assume for simplicity that the inclusions are

circular cylinders, i.e. Dk ¼ fz2C : jz�akj < rkg; k ¼ 1; . . .; n: Then, the problem

(5.12) becomes

jþðtÞ ¼ j�
k ðtÞ�rkj�

k ðtÞ þ mkðt�akÞðj�
k Þ

0ðtÞ þ mk

r2k
t�ak

ðj�
k Þ

0ðtÞ; jt�akj ¼ rk

ð5:26Þ

where mk ¼
1þrk
2rkgk

.

Finally, we have to rewrite the boundary conditions on the outer boundaryG in the

complex form too. The simplest is to reformulate the Dirichlet condition (5.6). We
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first solve the outer Schwarz boundary value problem

Re f0ðtÞ ¼ f ðtÞ; t2G ð5:27Þ

with respect to the function f0(z) analytic outside of the whole domain

D ¼ W
[n
k¼1

Lk
[n
k¼1

Dk, i.e. in ext D. Then by introducing an auxiliary unknown function

j0(z) analytic in ext D, j0(1)¼ 0 and using the same complex potential j(z) for W,
we rewrite Eq. (5.6) in the form of R-linear conjugation problem:

jþðtÞ ¼ j0ðtÞ�j0ðtÞ þ f0ðtÞ; t2G ð5:28Þ

A similar approach is used for the Neumann problem (5.7) (for complex

potential y) [16].
Problems (5.10) and (5.11) were discussed for arbitrary multiply connected

domains in Ref. [30] and solved explicitly for any multiply connected domain in

Ref. [16].

5.2.5

Periodic Problems

Boundary value problems for harmonic and analytic functions discussed in the

previous sections are also stated in classes of periodic functions. As it follows from

the theory of homogenization [17,18,20], such problems are the basis for rigorous

definition of the effective conductivity tensor. In the present section, we state peri-

odic problems.

Consider a lattice Q which is defined by three fundamental translation vectors

a, b, c. Hereafter, we consider orthogonal lattices, i.e. the vectors a, b, c generate an

orthogonal system of coordinates. For definiteness, we put a¼ (a,0,0), b¼ (0,b,0),
c¼ (0,0,g). Letm¼ (m1,m2,m3) denote vectors with integers components. Introduce

the zero-th cell (representative cell) Q �Q0:¼fx ¼ ðx1; x2; x3Þ : �a=2< x1 <a=2;
�b=2 < x2 < b=2;�g=2< x3 < g=2g. The lattice Q generates the cells

Qm:fx2R3 : ðx1�am1; x2�bm2; x3�gm3Þ 2Qg. Without loss of generality, it is

assumed that the volume ofQ is equal to unity, i.e. |Q|¼abg ¼ 1. Consider mutually

disjoint domains Dk (k¼ 1,2,. . .,n) lying in the zero-th cell Q. Let D be the comple-

ment of the closure of all Dk to Q.

Let a constant external gradient (q1,q2,q3) be applied to the material. Then, the

temperature distribution satisfies the conjugation condition (5.10) and the quasi-

periodicity relations with respect to the lattice Q:

Tðx1 þ a; x2; x3Þ�Tðx1; x2; x3Þ ¼ q1

Tðx1; x2 þ b; x3Þ�Tðx1; x2; x3Þ ¼ q2

Tðx1; x2; x3 þ gÞ�Tðx1; x2; x3Þ ¼ q3

ð5:29Þ
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Theorem 5.2.1 [17,20] The problem (5.10), (5.29) with fixed q1, q2 and q3 has a unique
solution in H1(Q) up to an arbitrary additive real constant.

In this subsection, the condition of the perfect contact (5.10) is considered. In a

similar way, other boundary and conjugation problems can be stated. Frequently,

instead of the quasi-periodicity conditions (5.29) boundary conditions are intro-

duced for symmetric problems as follows. Let the cell Q be symmetric with

respect to the coordinate axes, i.e. the inclusions are symmetrically located in

Q. Let the external gradient (c1,0,0) be applied to the periodic material. Then, the

the heat flux is symmetric with respect to the planes x2¼ b/2þm and x3¼ g/
2þm, where m¼ 0,�1,�2,. . .. In particular, this symmetry yields the Neumann

condition:

qT
qx2

ðx1;�b=2; x3Þ ¼ 0;
qT
qx3

ðx1; x2;�g=2Þ ¼ 0 ð5:30Þ

The first quasi-periodicity conditions (5.29) for the temperature distribution

yield the periodicity conditions for qT
qx1

on the planes x1¼�a/2. Then, T is a

constant on x1¼�a/2 and one can take the Dirichlet conditions:

Tð�a=2; x2; x3Þ ¼ �q1=2 ð5:31Þ

Therefore, the quasi-periodic problems (5.10), (5.29) becomes the mixed

problem (5.10), (5.30), (5.31) for the domain Q. Such an approach is applied in

Section 5.5.

Following Section 5.2.4, consider 2D quasi-periodic problems by the method

of complex potential. In this case, it is convenient to express the fundamental

translation vectors by the complex numbers a and ib¼ i/a. The problem (5.10),

(5.29) becomes the R-linear conjugation problem (5.23) with the quasi-periodicity

conditions

jðzþ aÞ�jðzÞ ¼ q1 þ id1; jðzþ ia�1Þ�jðzÞ ¼ q2 þ id2 ð5:32Þ

where q1 and q2 are given real constants, d1 and d2 are undetermined real constants

which should be found. The function j(z) is analytic in D, Dk, continuously differ-

entiable in the closure of the considered domains.

The problem (5.10), (5.32) can be considered as an R-linear conjugation problem

on the torus represented by the cell Q. It can also be considered as an R-linear

conjugation problem for an infinitely connected domain bounded by qDkþm
(m¼m1aþ im2a�1, and m1 and m2 run over integers).

Along similar lines, the periodicR-linear conjugation problem can be stated in the

form (5.21). Additionally, y(z) satisfies the periodicity conditions

yðzþ aÞ�yðzÞ ¼ 0; yðzþ ia�1Þ�yðzÞ ¼ 0 ð5:33Þ
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Theorem 5.2.2 ([77]) The problem (5.10), (5.32) has a unique solution in C2;aA ðQÞ up
to an arbitrary additive complex constant, say C + ig . This solution is related to the solution
T(z) of the 2D problem (5.10), (5.29) by the formulas

jðzÞ
lk þ 1

2
ðTðzÞ þ iVðzÞÞ; z2Dk; k ¼ 1; 2; . . .; n

TðzÞ þ iVðzÞ; z2D

(
ð5:34Þ

where V(z) is a harmonic conjugate to T(z). The constant C is the additive arbitrary real
constant from the general solution of the 2D problem (5.10), (5.29).

Theorem 5.2.3 [36] General solution of the homogeneous problem (5.21), (5.33) in
C2;aA ðQÞ has the form

yðzÞ ¼ q1yð1ÞðzÞ þ q2yð2ÞðzÞ; ð5:35Þ

where y(1)(z) and y(2)(z) are partial linearly independent solutions of the problem (5.21),
(5.33), q1 and q2 are arbitrary real constants.
This solution can be fixed by the relation c(j)(z)¼ (j(j))0(z), where j(j)(z) are as in

Theorem 5.2.2; j(1)(z) is a solution of the problem (5.10), (5.32) with q1¼1, q2¼0 and
j(2)(z) is a solution of the corresponding 2D problem with q1¼0, q2¼1.

The decomposition theorem (see representation (5.14)) on the torus generated by

the lattice Q was described in Ref. [37]. Any function T(z) which is harmonic in W
and doubly periodic can be written as

TðzÞ ¼ Re jðzÞ þ
Xn
k¼1

Ak½lnsðz�akÞ þ akzðz�akÞ�
( )

; z2D ð5:36Þ

where s and z are Weierstrass functions (see Section 5.6.1); Ak are real constants

satisfying relation (5.15). The function j(z) is analytic in W and quasi-periodic. The

choice of a branch of the logarithm does not impact on the value T(z) because we

actually deal with Re{lnz} in (5.36). One can choose an arbitrary brunch of ln(z� ak)
and suppose that the cut corresponding to this fixed brunch is doubly periodic and

has no common points withDm for eachm 6¼ k. Using the representation (5.36), one

can reduce periodic boundary value problems for harmonic functions to problems

for analytic functions following Section 5.2.4.

5.3

Effective Conductivity Tensor

Although the notation effective conductivity tensor is intuitively clear for physicists and
engineers, the rigorous mathematical definition of the effective conductivity tensor

needs a certain theoretical justification. One of the possible ways for such a justifi-

cation is the use of homogenization theory. Following Refs. [1,2,17,18,20], consider a

periodic composite. Let the linear sizes of the periods be of order e L, where L is the
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linear order of the sample D bounded by a simple closed curve G. Consider the
Dirichlet problem [20, p.20 Russian edn] in H1

0ðDÞ

rðLeðxÞrTeðxÞÞ ¼ 0 ð5:37Þ

TeðtÞ ¼ f ðtÞ; t2G ð5:38Þ

Let

LeðxÞrTeðxÞ* L̂rT0 in L2ðDÞ ð5:39Þ

where * means the weak convergence in L2(D), L̂ is a constant tensor and T0 is a
solution of the Dirichlet problem

rðL̂rT0ðxÞÞ ¼ 0; T0ðtÞ ¼ f ðtÞ; t2G ð5:40Þ

Then, the tensor L̂ is called the effective conductivity tensor. The homogenization

theory justifies the existence of the weak limit (5.39) and the independence of

the limit of the shape of G and boundary conditions. For instance, instead of the

Dirichlet condition (5.38), the Neumann condition can be taken. Moreover, the

homogenization theory implies that L̂ can be calculated by the formula

L̂q ¼ hLðxÞrTðxÞi ð5:41Þ

where hF(x)i denote the average over the cell Q

hFðxÞi ¼ 1

jQj

ð
Q
FðxÞdx ð5:42Þ

|Q| is the area of Q. The function T(x) is a solution of the quasi-periodic problem

(see Section 5.2.5):

rðLðxÞrTðxÞÞ ¼ 0; x2Q

Tðx1 þ a; x2; x3Þ�Tðx1; x2; x3Þ ¼ q1
Tðx1x2 þ b; x3Þ�Tðx1; x2; x3Þ ¼ q2
Tðx1; x2; x3 þ gÞ�Tðx1; x2; x3Þ ¼ q3

ð5:43Þ

Here, q¼ (q1,q2,q3) is the external flux. One can see that L̂ is completely determined

by (5.41) via solution to three problems (5.43) with q¼ (1,0,0), q¼ (0,1,0), q¼ (0,0,1).

In general, L̂ is a symmetric positively defined tensor. It can be reduced to the

diagonal form

L̂ ¼
l̂1 0 0
0 l̂2 0
0 0 l̂3

0@ 1A ð5:44Þ
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More precisely, there exists a coordinate system in which the tensor L̂ has the

diagonal form (5.44). The axes x0jð j ¼ 1; 2; 3Þ of this new coordinate system are

called the principal axes. The component bl j (j¼ 1,2,3) is called the conductivity in the

x0j-direction. The tensor ellipsoid, invariants of the tensor and other fundamental

properties of tensors can be found in standard courses on tensor algebra

(e.g. Ref. [38]).

The tensor L̂ for macroscopically isotropic composites has the form

L̂ ¼ l̂I; ð5:45Þ

where I is the identity tensor, i.e. in this case l̂: ¼ l̂1 ¼ l̂2 ¼ l̂3. The scalar l̂ is

called the effective conductivity.

The variational statement of the problem implies the formula

l̂q ¼ inf
u2H1

per ðQÞ
hlðxÞjruðxÞj2i ¼ hlðxÞjrTðxÞj2i ð5:46Þ

Consider a 2D representative symmetric cell. Then, the periodicity cell problem is

reduced to themixed problem (5.10), (5.30), (5.31) for the domainQ. In this case, the

following formula can used for the effective conductivity in the x1-direction:

l̂1 ¼
4

aq1

ða=4
�a=4

l x1;
b
4

� �
qT
qx1

x1;
b
4

� �
dx1 ð5:47Þ

This formula expresses that the effective conductivity in the x1-direction is equal to

the average flux passing along the symmetry segment x2 ¼ b
4,� a

4 < x1 < a
4 divided by

the jump of the temperature q1
2 per the half-periodicity cell. Similar formulas take

place for the conductivities l̂2 and for corresponding coefficients in R3 (i.e. for 3D

composites).

Consider now an application of the formula (5.41) to 2D matrix–inclusion com-

posites. Using the functions c(j)(z) described in Theorem 5.2.3, we obtain the

components of L̂:

l̂11�il̂12 ¼ 1þ 2
Xn
k¼1

rk

ð
Dk

jð1ÞðzÞdx1dx2;

l̂22 þ il̂22 ¼ 1þ 2i
Xn
k¼1

rk

ð
Dk

jð2ÞðzÞdx1dx2 ð5:48Þ

For macroscopically isotropic composites, we have

l̂ ¼ 1þ 2
Xn
k¼1

rk

ð
Dk

jð1ÞðzÞdx1dx2 ð5:49Þ
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Consider the case when the inclusionsDk are disks |z� ak| < rk. Then, application of

the mean value theorem to (5.49) yields

l̂ ¼ 1þ 2
Xn
k¼1

rkpr
2
kj

ð1ÞðakÞ ð5:50Þ

Thus one can see that to determine l̂ we need only y(1)(ak).

Remark 5.3.1 The area of the representative cell |Q | does not impact onto the effective
conductivity. Hence, it can be normalized to unity.

5.4

Review of Known Formulas

5.4.1

Laminates

Laminates are described by the local conductivity l(x1) which depends only on one

spatial variable in appropriate coordinates. Let the period of l(x1) be equal to unity.

Then, L̂ has the form (5.44) where

l̂1 ¼
ð1
0

dj

lðjÞ

� ��1

; l̂2 ¼ l̂3 ¼
ð1
0

lðjÞdj ð5:51Þ

Consider the case when l(x1) takes values l1 and l2 with the probabilities (con-

centrations) n1 and n2, respectively. Then, (5.51) becomes

l̂1 ¼
1

n1
l1
þ n2

l2

; l̂2 ¼ l̂3 ¼ n1l1 þ n2l2 ð5:52Þ

The general theory of laminates is presented in Refs. [2,3,39].

5.4.2

Clausius–Mossotti Approximation (CMA)

We begin with an analytical formula for the effective conductivity of macroscopically

isotropic composites known from the eighteenth century. Consider a two-

component macroscopically isotropic composite medium consisted of a collection

of non overlapping identical balls of conductivity l1 imbedded into a hostmedium of

conductivity l. The effective conductivity l̂ of the considered inhomogeneous me-

dium is calculated by the famous Clausius–Mossotti approximation (CMA)

l̂
l
¼ 1þ 2bn

1�bn
ð5:53Þ
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where b ¼ l1�l
l1þ2l, n is the concentration of the spheres. This formula is known also as

the Maxwell-Garnett or Lorenz–Lorentz formula (for historical remarks see Refs.

[40,41]). The formula (5.5.3) holds for dilute composites when the concentration n is
small.

In the 2D case, CMA becomes

l̂
l
¼ 1þ rn

1�rn
ð5:54Þ

where r ¼ l1�l
l1þl is the 2D contrast parameter (see Eq. (5.22)). Here n is the area

concentration of disks on the plane (the section of the fiber composite perpendicular

to the direction of fibers).

The Eqs. (5.53) and (5.54) can be deduced in the framework of Maxwell’s formal-

ism which is based on solution to the problem for one inclusion. The same method

can be applied to inclusions of other shapes.

CMA in 2D Consider a disk of radius r0 filled in by a material of conductivity l1.
The disk D ¼ fz2C : jz�aj < r0g is immersed in a material which occupies the

domain D0 ¼ fz2C : jz�aj > r0g whose properties are described by the scalar

conductivity l. The whole material is placed into a constant macroscopic flux in

the x1-direction. Then, the following conjugation conditions hold on the circle

L ¼ fz2C : jz�aj ¼ r0g orientated in the clockwise sense (see Eq. (5.10)):

TþðtÞ ¼ T�ðtÞ; l
qTþ

qn
ðtÞ ¼ l1

qT�

qn
ðtÞ; t2 L ð5:55Þ

We are looking for T�(z) in the following form:

T�ðr; qÞ ¼ Ar cos qþ B; Tþðr; qÞ ¼ 2l1
l1 þ l

r cos qþ C cos q
r

þ E

� �
ð5:56Þ

where z¼ x1 + ix2¼ a + r(cos q + i sin q), and A, B, C and E are undetermined con-

stants. One of the constants B, E can be fixed arbitrarily since the temperature is

uniquely determined up to an additive constant. It follows from Eq. (5.56) that the

function Tþ(r,q) has the required behavior at infinity:

Tþðr; qÞ� 2l1
l1 þ l

r cos q ¼ 2l1
l1 þ l

x1; as r!1

The conditions (5.55) in polar coordinates become

Tþðr0; qÞ ¼ T�ðr0; qÞ; l
qTþ

qr
ðr0; qÞ ¼ l1

qT�

qr
ðr0; qÞ; 0 � q < 2p ð5:57Þ
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Substitute Eq. (5.56) in Eq. (5.57) gives

Ar0 cos qþ B ¼ 2l1
l1 þ l

r0 cos qþ
C cos q

r0
þE

� �

A cos q ¼ 2l
l1 þ l

1�C2

r0

� �
cos q; 0 � q < 2p

ð5:58Þ

Taking E¼Re a, we obtain from Eq. (5.58):

A ¼ 4ll1
ðl1 þ lÞ2

; B ¼ 2l1
l1 þ l

Re a; C ¼ rr20 ð5:59Þ

Therefore, the temperature distribution (5.56) has the form

T�ðr; qÞ ¼ 2l1
l1 þ l

2l
l1 þ l

r cos qþ Re a

� �
; r � r0

Tþðr; qÞ ¼ 2l1
l1 þ l

r cos qþ rr20 cos q
r

þRe a

� �
; r	 r0

ð5:60Þ

We introduce the complex potentials:

F�ðzÞ ¼ T�ðzÞ þ iV�ðzÞ; z2D; FþðzÞ ¼ l1 þ l
2l1

ðTþðzÞ þ iVþðzÞÞ; z2D0

ð5:61Þ

We write Eq. (5.55) in the form of the R-linear conjugation problem (5.23):

FþðtÞ ¼ F�ðtÞ�rF�ðtÞ; t2L ð5:62Þ

The functionF+(z) has the principal part l1þl
2l1

z at infinity. It is easily checked that the
following functions satisfy Eq. (5.62):

F�ðzÞ ¼ ð1�r2Þðz�aÞ þ a�ra; jz�aj � r0; FþðzÞ ¼ zþ rr20
z�a

; jz�aj	 r0

ð5:63Þ

The complex potentials (5.63) correspond to the harmonic functions (5.60) due to

Eq. (5.61).

Following Maxwell’s approach, we assume that rr20 is sufficiently small. This is

true for dilute media when the inclusions are sparse or for weakly inhomogeneous

media when the contrast parameter r is small. In the limit case r0¼ 0, the function

F�(z) degenerates to a constant and F+(z)¼ z. In the second limit case r¼ 0,
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Eq. (5.63) becomes

F�ðzÞ ¼ FþðzÞ ¼ z ð5:64Þ

The case r0¼ 0 can be formally described also by Eq. (5.64). The difference between

Eqs. (5.63) and (5.64) for F+(z) is
rr20
z�a. The real part of the difference in polar

coordinates becomes r
r20 cos q

r . Hence, this term can be considered as a perturbation

of the complex potential created by the external field due to one inclusion.

Consider the temperature distribution in the medium with n inclusions. The

total perturbation term has the form rn
r20 cos q

r for sufficiently large r far away

from all n inclusions. Take now a fictive ‘‘homogenized disk’’ of radius R0

containing n small inclusions. Repeating the above argument, we will have a

perturbation r̂
R2
0 cos q
r , where r̂ ¼ l̂�l

l̂þl
. Supposing that these perturbations are

equal, we have

rnr20 ¼ R2
0r̂ , nr ¼ l̂�l

l̂þ l
ð5:65Þ

where n ¼ nð r0R0
Þ2 is the area concentration of the disks. Solution to Eq. (5.65) yields

CMA (5.54).

CMA in 3D CMA (5.54) can be found in the same way as in the previous part of this

subsection. First, we are interested in the solution to the problem for one ball of

radius r0 centered at x0 ¼ ðxð0Þ1 ; xð0Þ2 ; xð0Þ3 Þ:

TþðtÞ ¼ T�ðtÞ; l
qTþ

qn
ðtÞ ¼ l1

qT�

qn
ðtÞ; jt�x0j ¼ r0 ð5:66Þ

It can be directly checked that its solution has the form

T�ðxÞ ¼ 3l
2lþ l1

ðx1�xð0Þ1 Þ; TþðxÞ ¼ ðx1�xð0Þ1 Þ 1þ l�l1
2lþ l1

r30
r3

� �
ð5:67Þ

where r¼ |x� x0|. Here, the external field along the x1-axis is also considered.

In the limit cases r0¼ 0 and l1¼ l, the temperature distribution (5.67)

becomes

TþðxÞ ¼ T�ðxÞ ¼ x1�xð0Þ1 ð5:68Þ

Therefore, one can consider the term l1�l
2lþl1

r30
r3 b r30

r3 as a perturbation due to one ball.

Then, the perturbation due to n balls nb r30
r3 can be equal to the perturbation of the
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homogenized ball:

bnr30 ¼ R3
0

l̂�l
l̂þ 2l

, nb ¼ l̂�l
l̂þ 2l

ð5:69Þ

where n ¼ nð r0R0
Þ3 is the volume concentration of the balls. Solution to equation (5.69)

yields CMA (5.53).

Remark 5.4.1 Application of Maxwell’s approach to composite media with elliptic
inclusions is given in Ref. [42]. One can find there approximate analytical formulas for
the effective conductivity. Other shapes of inclusions are studied in Ref. [43] in terms of
Pòlya–Szege’s matrix. This matrix expresses the effective conductivity tensor for dilute
inclusions and corresponds to CMA.

5.4.3

Effective Medium Theory (EMT)

The effective medium theory (EMT) is based on local study of the composites and

porous media when an inclusion is embedded in a homogeneous medium whose

effective conductivity is unknown and to be determined by averaging the local

structure. Application of EMT leads to analytical formulas for the effective con-

ductivity. It was originated by Bruggeman [44] and developed by Kirkpatric [45]

who proposed approximating the medium by square or cubic network (see

Section 5). Self-consistent methods, the method of Mori–Tanaka [46], differential

effective medium methods and their relations and extensions were discussed in

Ref. [47]. We discuss here the cases of circular and spherical inclusions

separately.

EMT in 2D Consider a 2D basic element in the complex plane C in the form of a

disk of radius rk filled in by a material of conductivity lk, i.e. the number k is fixed.
The disk Dk ¼ fz2C : jz�akj < rkg is immersed in a material which occupies the

domain Wk ¼ fz2C : jz�akj > rkg whose properties are described by the scalar

conductivity l̂ (the effective conductivity to be determined later). The whole material

is placed into a constant macroscopic flux in the x1-direction. Then, the following

conjugation conditions hold on the fixed circle Lk ¼ fz2C : jz�akj ¼ rkg orientated
in the clockwise sense (compare with Eq. 5.55):

TþðtÞ ¼ T�ðtÞ; l̂
qTþ

qn
ðtÞ ¼ lk

qT�

qn
ðtÞ; t2 Lk ð5:70Þ
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The problem (5.70) has been solved in Section 5.4.2 (see Eq. (5.60)). In polar

coordinates z ¼ x1 þ ix2 ¼ ak þ rðcos qþ i sin qÞ, its solution has the form

T�ðr; qÞ ¼ 2lk
lk þ l

2l̂
lk þ l̂

r cos qþ Re ak

 !

Tþðr; qÞ ¼ 2lk
lk þ l

r cos qþ Dkr2k cos q
t

þRe ak

� � ð5:71Þ

where Dk ¼
l̂ lk

l̂þ lk
.

The problem (5.70) in terms of the complex potentials

F�ðzÞ ¼ T�ðzÞ þ iV�ðzÞz2Dk; FþðzÞ ¼ lk þ l̂
2lk

ðTþðzÞ þ iVþðzÞÞ; z2Wk

ð5:72Þ
becomes

FþðtÞ ¼ F�ðtÞ�DkF�ðtÞ; t2Lk ð5:73Þ

It follows from Eq. 5.63 that

F�ðzÞ ¼ ð1�D2
kÞðz�akÞ þ ak�Dkak; FþðzÞ ¼ zþ Dkr2k

z�ak
ð5:74Þ

The residue of F+(z) at z¼ ak is equal to Dkr2k . It expresses the dipole moment of

the complex potentialF+(z). Up to now it was assumed that the number k is fixed. Let
us consider infinitely many disks packing the plane, i.e. each point of the plane

belongs to one disk. Let all disks be divided into n types characterized by the radius

rk, and having conductivity lk. Let nk denote the concentration of the disks of the k-th
type uniformly distributed on the plane. One can consider nk as the area probability
of the k-th type. Then,

Pn
k¼1 nk ¼ 1. We are interested in the total dipole moment

corresponding to disks. The dipole moment of each disk is approximated by Dkr2k
and the dipole moment of the ‘‘level’’ (phase) k is proportional to Dknk. Supposing
that the total moment created by each level vanishes, we haveXn

k¼1

nkDk ¼ 0,
Xn
k¼1

nk
l̂�lk
l̂þ lk

¼ 0 ð5:75Þ

The effective conductivity l̂ is the solution of Eq. (5.75).

The relation (5.75) admits the following continuous interpretation:

ð1
0

nðlÞ l̂�l
l̂þ l

dl ¼ 0 ð5:76Þ

where n(l) is the density function of the random variable l.
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Example 5.4.2 Consider a two-phase material each phase of which takes the same area.
Then, n¼ 2, n1 ¼ n2 ¼ 1

2 and Eq. (5.75) yields the geometric mean for the effective
conductivity

l̂ ¼
ffiffiffiffiffiffiffiffiffiffi
l1l2

p
ð5:77Þ

Example 5.4.3 Following Ref. [47], consider the lognormal distribution of local conduc-
tivity

nðlÞ ¼ 1

bl
ffiffiffi
p

p exp �ðlnl�aÞ2

2b2

 !
ð5:78Þ

with positive parameters a and b. We now prove that Eq. (5.76) with n(l) given by
Eq. (5.78) has the unique solution

l̂ ¼ exp a ð5:79Þ

The existence and uniqueness for Eq. (5.76) follows from physical observation that the
effective conductivity exists for macroscopically isotropic media. Let us change the variable
in the integral (5.76) l ¼ exp2a

t and use the relation nðtÞ ¼ exp2a
t2 n exp2a

t

� �
for the function

(5.78). Then Eq. (5.76) becomes

ð1
0

nðtÞ
t� exp2a

l̂
tþ exp2a

l̂

dt ¼ 0 ð5:80Þ

Since Eqs. (5.76) and (5.80) have a unique solution, these equations give the same result
l̂ ¼ exp2a

l̂
which implies Eq. (5.79). It follows from Section 5.4.4 that the formula (5.80) is

exact for the lognormal distribution.

EMT in 3D Following the previous part of this subsection and Ref. [6], we construct

an effective medium approximation in 3D case. It can be directly checked that the

solution of the problem

TþðtÞ ¼ T�ðtÞ; l̂
qTþ

qn
ðtÞ ¼ lk

qT�

qn
ðtÞ; t2 Lk ð5:81Þ

for the sphere Lk of radius rk centered at xk ¼ ðxðkÞ1 ; xðkÞ2 ; xðkÞ3 Þ has the form

T�ðxÞ ¼ 3l̂
2l̂þ lk

ðx1�xðkÞ1 Þ; TþðxÞ ¼ ðx1�xðkÞ1 Þ 1þ l̂�lk
2l̂þ lk

r3k
r3

 !
ð5:82Þ

where r¼ |x� xk|. Here, for simplicity, the external field is taken along the x1-axis.
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The dipole moment corresponding to the phase of conductivity lk is proportional
to nk l̂�lk

2l̂þlk
. Equating the total moment to zero, we obtain an equation for the effective

conductivity l̂ :

Xn
k¼1

nk
bl�lk
2blþ lk

¼ 0 ð5:83Þ

The latter formula can be extended to the continuous phase case

ð1
0

nðlÞ l̂�l
2l̂þ l

dl ¼ 0 ð5:84Þ

Remark 5.4.4 The differential method is closely related to EMT. One can find analytical
formulas for different types of composite media and references for instance in Refs. [41,42].

5.4.4

Duality Theory for 2D Media

Keller–Mathéron Theory The theory of duality transformation of 2D media was

discovered by Keller [48] for two-phase media and independently by Mathéron

[49] for general media. It is based on the observation that a divergent free field

produces a curl-free field when it is rotated locally by 90
. Application of this theory

yields an expression for the effective conductivity of a two-phase medium when

phases are interchanged. The famous square-root formula (5.77) was deduced by

Dykhne [50] by use of duality. It is exact for the square checkerboard.

Following Mathéron [49], we introduce the resistivity tensor H(x)¼L�1(x) and

treat the local tensors as random functions of x. Consider a 2D medium when the

following hypothesis is fulfilled:

(H1) The random fields L(x)hL(x)i�1 and H(x)hH(x)i�1 have the same spatial
distribution.
Then [20,47,51,52],

jL̂j ¼ hLðxÞij j
jhLðxÞjLðxÞj�1ij

ð5:85Þ

where |�| denotes the determinant of the matrix, h�i is the spatial average (5.42). In
the particular case where L(x) takes only two constant values l1I and l2I with the

same probability 1
2, we obtain Keller’s identity [48]

l̂1l̂2 ¼ l1l2 ð5:86Þ
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Here, l̂1 is the effective conductivity of the medium in the x1-direction, l̂2 is the

effective conductivity in the x2-direction of anothermediumwhich is produced from

the original one by exchanging the phases with different conductivities l1 and l2.
Consider a medium for which the hypothesis (H1) and also the following hypoth-

esis are valid:

(H2) The random fields L(x) is invariant under rotations.
Then, the effective tensor is isotropic and [49]

l̂ ¼
ffiffiffiffiffiffiffiffiffi
l0h0

p
ð5:87Þ

where the scalars l0 and h0 denote the average conductivity and resistance over the

representative cell, namely hL(x)i¼l0I, hH(x)i¼ h0I. In the particular case where

L(x) takes only two constant values l1I and l2I with the same probability 1
2, Eq. (5.87)

yields Eq. (5.77).

The following duality transformation between two different conductivity problems

was proposed by Milton [3]. Let L(x) be the conductivity tensor in a medium; define

the conductivity tensor L0(x) by

L0ðxÞ ¼ ½aLðxÞ þ bR�½cIþ dRLðxÞ��1 ð5:88Þ

where a, b, c, d are constants and R is the matrix for 90^ rotation. Milton proved that

their effective conductivity tensors are also related by Eq. (5.88).

The effective conductivity of the three-phase tesselation is conjectured to be an

algebraic function in Ref. [53]. Other relations of the theory of duality transforma-

tions and their applications are discussed in Refs. [47,54–57] and works cited

therein.

Craster–Obnosov Formulas It was noted in 1996 [58,59] that the study of the few-

phases checkerboard composites can be reduced to the matrix Riemann–Hilbert

problem of analytic function theory. Craster and Obnosov in a series the papers

[59–65] deduced exact formulas for the effective conductivity tensor based on the

explicit representations of the local fields for various types of such composites.

Consider a doubly periodic four-phase checkerboard composite when the repre-

sentative rectangle has the lengths of the sides a, a�1 (see Figure 5.1).

Fig. 5.1 Checkerboard four-phase medium: (a) doubly

checkerboard; (b) representative cell.
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Let the local conductivity l¼ l(x) take the value lj in the j-phase (j¼ 1,2,3,4).

Following Ref. [59], we use the complete elliptic integral:

KðmÞ ¼
ðp=2
0

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2sin2q

p

where the parameter m is implicitly defined via the equation K(m)/K(1�m)¼a2.

We introduce also the parameters

s1 ¼ l1 þ l2 þ l3 þ l4; s2 ¼ l1l3 þ l2l4;
s3 ¼ l1l2l3 þ l1l2l4 þ l1l3l4 þ l2l3l4:

ð5:89Þ

The parameter q is introduced implicitly via cospq ¼ 1�2s2
2ðs1s3 þ s2

2Þ
�1. We

introduce the function

kðm;qÞ ¼
Pq

2�1
2
ð2m�1Þ

Pq
2�1

2
ð1�2mÞ ð5:90Þ

where Pm is the Legendre function of the first kind. The effective conductivity is

explicitly given by the formulas

l̂1 ¼
1

a2kðm;qÞ
ðl1 þ l2Þðl3 þ l4Þ
ðl2 þ l3Þðl4 þ l1Þ

� 	1
2 s1

s3

� �1
2

ð5:91Þ

l̂2 ¼ a2kðm;qÞ ðl2 þ l3Þðl4 þ l1Þ
ðl1 þ l2Þðl3 þ l4Þ

� 	1
2 s1

s3

� �1
2

ð5:92Þ

It is worth noting that for the square checkerboards a¼ 1 implies m ¼ 1
2. Hence,

k 1
2;q
� �

¼ 1 and Eqs. (5.91) and (5.92) become simple algebraic functions of lj.
Other special cases such as l2¼ l4, highly contrasting phases and other new

formulas are discussed in the papers cited above. In particular, nonconducting or

perfectly conducting strips between phases in four-phase checkerboards [61], trian-

gle structures [62,64] have been explicitly studied. The case l2¼l3¼l4 corresponds
to composites with rectangular inclusions of the concentration 1

4. The effective

properties of medium with quadratic holes with arbitrary concentration were ex-

plicitly calculated in Ref. [66] by application of conformal mappings.

5.5

Network Approximations

Network approximations for evaluation of the temperature field in composites and

porous media is based on the replacement of the 3D solid material by Kirchhoff’s

146j 5 Analytical Methods for Heat Conduction in Composites and Porous Media



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

discrete circuit presented by a graph. Such approximations can be applied for

instance to two-phase composites with high contrast parameter when the conduc-

tivity of inclusions is much greater than the conductivity of matrix and the in-

clusions generate clusters, i.e. the inclusions are closed, and the heat is transferred

mainly along paths connecting them. The vertices of the graph correspond to the

inclusions and the paths correspond to one-dimensional edges of the graph.

Various authors [67–71] developed continuum percolation models taking into

account the spatial geometry of media. The saddle points of the smooth phase

function were used in Ref. [67] as elementary blocks of the network. By contrast,

the capacity of the pair of inclusions were used in Refs. [68–71] as the conductivity of

the basic paths conducting the heat.

Following Ref. [69], we discuss macroscopically isotropic 2D composites with

random nonoverlapping identical circular inclusions of radii r. The temperature

field between the neighboring disks Di and Dj is described by Keller’s formula [72]

for the specific flux:

gi j ¼ p
ffiffiffiffiffiffi
r

di j

r
ð5:93Þ

where dij is the distance between the disks.

The definition of neighbor disks is introduced via 2D Voronoi tessellation. It is

illustrated by Figure 5.2, where the centers of the disks are considered as vertices

of the graph G. The domain Q is divided into polygonal regions. Each of the

polygonal regions contains only one vertex and points which are closer to this

vertex than to one another. Hence, each edge of the graph G is divided by a side of

the polygons by two equal segments. Moreover, the edge and the side are perpen-

dicular and all points of the side are equidistant from the corresponding vertices.

The graph G0 consisting of the sides of the polygons is called the dual graph to the

graph G.

Fig. 5.2 Continuous percolationmodel: (a) nonoverlapping disks

and Voronoi tessellation; (b) Delaunay graph G, its vertices

are centers of the disks; (c) dual graph G0 whose edges coincide
with the sides of Voronoi’s polygons.
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Let i be the number of the diskDi in the representative cellQ(i¼ 1,2,. . .,N). Divide
the set {i¼ 1,2,. . .,N} onto the subsets I, Sþ and S�, where S� corresponds to the

disks which are closed to the boundary edges x ¼ � 1
2 of the cellQ and I corresponds

to internal disks. The discrete temperature distribution T(x)¼ ti, x2Di, satisfies the

system of linear algebraic equations:

X
j2AðiÞ

gi jðti�t jÞ ¼ 0; for i2 I; ti ¼ � 1

2
; for i2S� ð5:94Þ

where gij has the form (5.93),A(i) denotes the set of vertices which are adjacent to the

vertex i, i.e. other vertices of the edges containing the vertex i. The first Eq. (5.94)

correspond to the flux in the necks between inclusions, the second to the boundary

conditions. Actually, Berlyand and co-workers, [68–71] used a more complicated

model taking into account interaction with the boundary of Q.

The effective conductivity is given by the following asymptotic formula:

l̂ ¼ 1

4

X
i; j

gi jðti�t jÞ2 þOð1Þ þO

ffiffiffi
d
r

r !
; as d! 0 ð5:95Þ

where d¼max(dij). Each term 1
4 gi jðti�t jÞ2 is of order O

ffiffi
r
d

p� �
. It comes from the

formula for the energy of a condenser E ¼ 1
2CV

2, where C is its capacity, V is the

difference of potentials. The additional multiplier 1
2 is put in Eq. (5.95), since each

term is taken two times.

The formula (5.95) can be used for composites with a high concentration of

inclusions and a high contrast parameter. First, one has to solve the system

(5.94) with respect to ti where the coefficients gij are determined by the distances

between inclusions dij, i.e. the geometry of the medium. Then, ti are substituted into
Eq. (5.95).

The correspondence of the discrete model to the original continuum medium

with circular inclusions had been rigorously justified in Refs. [68–71]. Other shapes

of inclusions and 3D composites were also discussed by a similar method. It follows

from formula (5.93) that the capacity tends to infinity as dij tends to zero. This means

that the heat is mainly transferred through the necks between inclusions. However,

the relationship between the discrete and continuousmodels is not direct for general

problems. Kolpakov [73] investigated this problem by estimation of the capacity of

the pairs of inclusions when the distance between the inclusions dij tends to zero. He

showed that the capacity tends to zero if dij! 0 in 2D. However, this correspondence

fails for the pair cone-half space in 3D.

In porous media, instead of the perfectly conducting inclusions, isolating holes

are considered. Then, the conducting solid phase can be approximated by the graph

G0. Pores can be filled by heated gases. Then, other types of problems can arise. It is

worth noting that the latter problems are not studied as deeply as problems for

porous media with perfectly conducting inclusions discussed above.
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5.6

Doubly Periodic Problems

5.6.1

Introduction to Elliptic Function Theory

Elliptic functions [74,75] are doubly periodic meromorphic functions with the

periods o1, o2 whose ratio o2/o1 is not a real number (it should be mentioned

that Jacobi’s theorem says that there is no single-valued analytic function with more

than two periods).

Let us recall now some general properties of doubly periodic functions. Let f(z) be
a single-valued analytic function with two periods o1/o2, Im o2/o1> 0. Then

f ðzþ wÞ ¼ f ðzÞ; 8w ¼ m1v1 þm2v2; m1;m2 2Z

Any parallelogram with points z0, z0þw1, z0þw1þw2, z0þw2 as its vertices is

called a parallelogram of periods (and also a fundamental cell, whenever z0¼ 0).

Weierstrass }-function The Weierstrass }-function can be represented in the form

of a series:

}ðzÞ ¼ 1

z2
þ
X
m1;m2

0 1

ðz�m1v1�m2v2Þ2
� 1

ðm1v1 þm2v2Þ2

" #
ð5:96Þ

where
X
m1;m2

0
means that summation is performed over all integersm1,m22Z except

m1,m2¼ 0. The properties (a)–(e) follow directly from Eq. (5.96):

a. }ðzÞ is a doubly periodic function with the only pole

m1w1þm2w2.

b. }ðzÞ is an even function of order 2.

c. Its derivative }0 is an odd function of order 3.

d. In the neighborhood of the origin its principal part is equal to
1
z2.

e. }ðzÞ� 1
z2 tends to zero as z! 0.

f. It is an inverse function to the elliptic integral:

z ¼
ðz
1

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x3�g2x�g3

p ðz ¼ }ðzÞÞ ð5:97Þ

where

g2 ¼ 60
X
m1 ;m2

0 1

ðm1v1 þm2v2Þ4
; g3 ¼ 140

X
m1;m2

0 1

ðm1v1 þm2v2Þ6

ð5:98Þ
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The functions }ðzÞ and }0 are related by the following algebraic relation:

}02ðzÞ ¼ 4}3ðzÞ�g2}ðzÞ�g3 ð5:99Þ

Weierstrass z-function The Weierstrass z-function (which should not be confused

with the well-known Riemann z-function playing an important role in the descrip-

tion of prime numbers) is defined by integration of the Weierstrass }-function,

namely

zðzÞ ¼ 1

z
�
ðz
0

}ðzÞ� 1

z2


 �
dz ð5:100Þ

Differentiating Eq. (5.100), we have z0ðzÞ ¼ �}ðzÞ. Therefore, the Weierstrass

z-function is an odd function (z(�z)¼�z(z)) having only the one pole in the

parallelogram of periods (of the }-function (!)) with residue 1. Hence, the z-function
cannot be elliptic; sometimes it is called quasi-periodic since the following relations

are valid:

zðzþ v1Þ ¼ zðzÞ þ 2h1; zðzþ v2Þ ¼ zðzÞ þ 2h2 ð5:101Þ

where the constants h1, h2 are equal h1¼ z(w1/2), h2¼ z(w2/2).

Weierstrass s-function This function of the Weierstrass collection is obtained due

to line integration of zðzÞ� 1
z along an arbitrary curve starting from the origin and not

passing through any pole of the integrand. To avoidmulti-valuedness, s(z) is defined
as follows:

log
sðzÞ
z

¼
ðz
0

zðzÞ� 1

z


 �
dz ð5:102Þ

Differentiation formula has in this case the form s0ðzÞ
sðzÞ ¼ zðzÞ. The s-function is

an odd function having no singularity in any bounded domain and only zeroes

at z¼m1w1 +m2w2. Thus, it is also not an elliptic function. The following holds with

the same constants as for z-function: sðzþ v1Þ ¼ �e2h1ðzþv1ÞsðzÞ; sðzþ
v2Þ ¼ �e2h2ðzþv2ÞsðzÞ.

q-function In practice, it is often supposed that one of the periods of an elliptic

function is real. It can be realized by performing the following changes of variables:

v ¼ z
v1
; t ¼ v2

v1
. Then, in the variable n, the elliptic function will have the periods 1

and t, still supposing that Im t > 0. In this variable, the q-function is defined in form

of a series:

qðvÞ ¼ i
X1
�1

ð�1Þnq n�1
2ð Þ2eð2n�1Þpvi ð5:103Þ
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where q ¼ epit. There is a connection between the q-function and s-function given

by the formula:

sðzÞ ¼ v1

q0ð0Þ e
pz2
v1 q

z

v1

� �
ð5:104Þ

Hence, the q-function has no poles at any bounded domain (and is not an elliptic

function). From the definition (5.103) of the q-function, it follows that

q(v + 1)¼�q(v), qðv þ tÞ ¼ � 1
q e

�2pviqðvÞ. The points v¼m1þm2t are the only

zeros of the q-function.

Classical Eisenstein–Rayleigh Sums It is convenient to use the elliptic functions in

the form of the Eisenstein series introduced by Eisenstein in 1847 and developed by

Weil [76]. The classical lattice sums (the Eisenstein sums) were applied to calculation

of the effective conductivity tensor by Rayleigh [77] (see also Refs. [78,79]) when a

representative cell contains one inclusion.

In the present subsection, we introduce the fundamental parameters of the elliptic

function theory following Weil [76] and Akhiezer [74]. Consider a lattice Q which is

defined by two fundamental translation vectors expressed by complex numbers w1

and w2 on the complex plane C. For definiteness, we assume that Imt > 0, where
t¼w2/w1.Weintroducethe(0,0)cellQ(0,0):¼{z¼ t1w1þ t2w2:�1/2< tj< 1/2(j¼ 1,2)}.

The latticeQ consists of the cells Qðm1;m2Þ:fz2C : z�m1v1�m2v2 2Qð0;0Þg, where
m1 and m2 run over integer numbers.

The Eisenstein summation method is defined as follows:

X
m1 ;m2

¼ lim
N!1

XN
m2¼�N

lim
M!1

XM
m1¼�M

 !
ð5:105Þ

Using this summation, we introduce

Snðv1;v2Þ:
X
m1 ;m2

0ðm1v1 þm2v2Þ�n ð5:106Þ

where m1 and m2 run over all integer numbers except the pair m1¼m2¼ 0,

n¼ 2,3,. . .. The sum (5.106) with n¼ 2 is conditionally hence slowly convergent.

The formula deduced in Ref. [80] S2ðv1;v2Þ ¼ 2
v1
z v1

2

� �
is efficient in computations.

Rylko [91] deduced another efficient formula:

S2ðv1;v2Þ ¼
p
v1

� �2 1

3
�8
X1
m¼1

mq2m

1�q2m

 !
; where q ¼ expðpitÞ ð5:107Þ

The sums (5.106) with n > 2 are absolutely convergent. It is known that Sn(w1,w2)¼ 0

for odd n. For even n, the Eisenstein–Rayleigh sums (5.106) can be easily calculated
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through the rapidly convergent infinite sums (see Eq. (5.98)

g2 ¼ g2ðv1;v2Þ ¼
p
v1

� �4 4

3
þ 320

X1
m¼1

m3q2m

1�q2m

 !
ð5:108Þ

g3 ¼ g3ðv1;v2Þ ¼
p
v1

� �6 8

27
� 448

3

X1
m¼1

m5q2m

1�q2m

 !
ð5:109Þ

Then,S4ðv1;v2Þ ¼ 1
60 g2ðv1;v2Þ; S6ðv1;v2Þ ¼ 1

1400 g3ðv1;v2Þ.ThesumsS2n(w1,w2)

(n	 4) are calculated by the recurrence formula:

S2nðv1;v2Þ ¼
3

ð2nþ 1Þð2n�1Þðn�3Þ
Xn�2

m¼2

ð2m�1Þð2n�2m�1ÞS2mS2ðn�mÞ

ð5:110Þ

Remark 5.6.1 The series (5.106) with n¼ 2 is Ref. [82] conditionally convergent. The
possibility of its calculation by using (5.107) is justified in. A formula for nonperiodic
(random) arrays to properly define S2 is discussed in Ref. [83].

Weierstrass functions can be expressed as Taylor expansions:

lnsðzÞ ¼ lnz�
X1
n¼2

S2n
2n

z2n; zðzÞ ¼ 1

z
�
X1
n¼2

S2nz
2n�1;

}ðzÞ ¼ 1

z2
þ
X1
n¼2

ð2n�1ÞS2nz2n�2

ð5:111Þ

The formulas (5.111) are not used for calculating the Weierstrass functions. For

instance, s(z) is better computed by (5.104), because the q–function can be com-

puted by a very fast formula (5.103).

Eisenstein Series In the following, we summarize the main facts of the Eisenstein

series theory following Weil [76]. The Eisenstein series are defined as follows:

Enðz;v1;v2Þ:
X
m1;m2

ðz�m1v1�m2v2Þ�n; n ¼ 2; 3; . . . ð5:112Þ

The Eisenstein summation method (5.105) is applied to E2(z; w1,w2). The series

En(z; w1,w2) for n¼ 3, 4, . . . as a function in z converge absolutely and almost

uniformly in the domain Cn[m1 ;m2
ðm1v1 þm2v2Þ. Each of the functions (5.112)

is doubly periodic and has a pole of order n at z¼ 0. However, further it will be

convenient to define the value of En(z; w1,w2) at the point zero as follows:

Enð0;v1;v2Þ:Snðv1;v2Þ ð5:113Þ
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The Eisenstein functions of the even order E2n(z) can be presented in the form of the

series:

E2nðzÞ ¼
1

z2n
þ
X1
k¼0

sðnÞ
k z2ðk�1Þ ð5:114Þ

where

sðnÞ
k ¼ ð2nþ 2k�3Þ!

ð2n�1Þ!ð2k�2Þ! S2ðnþk�1Þ ð5:115Þ

The Eisenstein series and the Weierstrass function }ðz;v1;v2Þ are related by the

identities

E2ðz;v1;v2Þ ¼ }ðz;v1;v2Þ þ S2ðv1;v2Þ;

Enðz;v1;v2Þ ¼
ð�1Þn

ðn�1Þ!
dn�2

dzn�2
}ðz;v1;v2Þ

ð5:116Þ

Generalized Eisenstein–Rayleigh Sums We now proceed to introduce one of the

most important mathematical objects of the present section, the generalized Eisen-

stein–Rayleigh sums. Consider a set of points ak (k¼ 1, 2, . . ., N) in the cell Q. Let p
be a natural number; ks runs over 1 to N, nj¼ 2, 3, . . .. Let C be the operator of

complex conjugation. The value

em1...mq :¼N�½1þ1
2ðm1þ...þmqÞ�

X
k0k1 ...kq

Em1
ðak0�ak1ÞEm2

ðak1�ak2Þ. . .CqEmqðakq�1
�akqÞ

ð5:117Þ

is called the generalized Eisenstein–Rayleigh sum. The parameters w1 and w2 are

omitted in En. According to (5.113), en(w1, w2) becomes the classical Eisenstein–

Rayleigh sum Sn(w1, w2) in the case N¼ 1.

We are also interested in the normalized Eisenstein series (compare to Eq.

(5.103):

Enðz; 1; tÞ:
X
m1 ;m2

ðz�m1�m2tÞ�n; n ¼ 2; 3; . . . ð5:118Þ

We have the relations

Enðz;v1;v2Þ ¼ v�n
1 En

z

v1
; 1; t

� �
; en1...npðv1;v2Þ ¼ v�2k

1 en1 ...npð1; tÞ

ð5:119Þ
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where 2k:¼ n1+. . .+np. Note that we shall need further only the even sums

n1+. . .+np.

Remark 5.6.2 Berdichevskij [84] constructed three-dimensional counterparts of the ellip-
tic functions which could be used for three-dimensional conductivity and elasticity problems.
Huang [85] proposed exact integral formulas for three-dimensional lattice sums. His ex-
amples show that simple quadrature rules with modest numbers of nodes yield highly
accurate results. A review of various numerical calculations of three-dimensional lattice
sums is given in Ref. [85].

5.6.2

Method of Functional Equations

In this section, we describe the method of functional equations in the class of

analytical functions [16,80,86–90]. This method is used for solution of boundary

value problems for the Laplace equation.

Let us consider the method of functional equations in the example of a solution of

the followingproblem.Consider the cellQ(0,0)withNnonoverlapping circular disksDk

of radius rwith the centers ak2Q(0,0)(k¼ 1,2, . . .,N). LetD0 be the complement of the

closure of all disks Dk to Q(0,0). We study the conductivity of the doubly periodic

composite material when the domains Dper :¼[ ðm1;m2ÞðD0 [ qQð0;0Þþm1v1þm2v2Þ
andDkþm1w1þm2w2 (m1,m2 are integers) are occupied by materials of conductivi-

ties l0 and l, respectively. The conductivity of the inclusions l is expressed relative to

l0. Hence, the conductivity of the matrix can be taken as unity (l0¼ 1). The local

potential T(z) in Q(0,0) satisfies the conjugation conditions:

TþðtÞ ¼ T�ðtÞ; qT
þ

qn
ðtÞ ¼ l

qT�

qn
ðtÞ on qDk ¼ ft2C : jt�akj ¼ rg;

k ¼ 1; 2; . . .;N

ð5:120Þ

The potential T(z) satisfies the quasi-periodicity conditions:

Tðzþ v1Þ ¼ TðzÞ þW1; Tðzþ v2Þ ¼ TðzÞ þW2 ð5:121Þ

Here, the function T(z) is harmonic in Q(0,0) except qDk(k¼ 1, 2, . . ., N), the circles
qDk are orientated in the clockwise direction. In order to determine the effective

conductivity tensor L, it is sufficiently to solve the problem (5.120), (5.121) with two

linear independent vectors (W1, W2). The problem (5.120) is reduced to the R-linear

conjugation problem (see Section 5.2.4). For simplicity, consider the case N¼ 1:

yðtÞ ¼ y1ðtÞ þ r
r

t�a

� �2
y1ðtÞ�1; jt�aj ¼ r ð5:122Þ

The unknown function y(z) can be presented in the form of its Taylor expansion:

yðzÞ ¼ r
P1

l¼0ylðz�aÞl. The problem (5.122) is reduced to the following functional
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equation:

yðzÞ ¼ r
X1
l¼0

ylr
2ðlþ1ÞfElþ2ðz�aÞ�ðz�aÞ�ðlþ2Þg þ 1; jz�aj � r ð5:123Þ

We look for y(z) in the form of the series expansion in r2 : yðzÞ ¼
P1

s¼0r
2syðsÞðzÞ.

The functional Eq. (5.123) has a unique solution which can be found by themethod of

successive approximation uniformly convergent in |z� a|� r:

yð0ÞðzÞ ¼ 1;

yð pþ1ÞðzÞ ¼ r½yð0Þ
p h pþ2ðz�aÞ þ yð1Þ

p�1h pþ1ðz�aÞ þ . . .þ yð pÞ
0 h2ðz�aÞ�

ð5:124Þ

where hp(z)¼Ep(z)� z�p. Using Eqs. (5.50) and (5.124), Rylko [81] calculated ap-

proximately l̂ for a square array of cylinders and r¼ 1:

l̂ ¼ 1þ n
1�n

þ 6S24p
�4 n5

ð1�nÞ2
þ 2ð9S24 þ 7S28Þp�8n9 þ Oðn10Þ ð5:125Þ

where n ¼ Npr2
jQð0;0Þj is the concentration of the disks in the cellQ(0,0), |Q(0,0)| is the area of

Q(0,0), S2¼p, S4� 3.1512112, S8� 4.2557732. The first term in Eq. (5.125) corre-

sponds to the CMA (5.54). More complicated investigation of the functional Eq.

(5.123) implies the following exact formula for a square array:

l̂ ¼ 1þ 2rnþ 2r2n2

þ 2r2n2
1

p

X1
k¼1

rk
X1
m1¼1

X1
m2¼1

. . .
X1
mk¼1

sð1Þ
m1
sðm1Þ
m2

. . .sðmk�1Þ
mk

sðmkÞ
1

n
p

� �2ðm1þm2þ...þmkÞ�k

ð5:126Þ

where sðnÞ
k has the form (5.115).

Similar arguments can be applied to the general R-linear conjugation

problem with arbitrary N. The effective conductivity tensor L̂ has the following

structure:

L̂ ¼ ð1þ 2rnÞ
1 0

0 1

 !
þ 2rn

X1
k¼1

ReAk ImAk

ImAk Ck

 !
nk ð5:127Þ

where

Ak ¼ jQð0;0Þjk
X
n1 ...np

BðkÞ
n1...np

en1 ...npðv1;v2Þ ð5:128Þ
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The constants BðkÞ
n1 ...np depend only on k, r and n1, . . ., np. Here, nj¼ 2, 3, . . .;

k¼ 1, 2, . . ... The values Ck have an analogous form. Only the terms

en1 ...npðv1;v2Þ defined by (5.117) depend on the centers of inclusions ak in the

representation (5.127) of L̂. The first few coefficients Ak have the form [98]

A1 ¼
r

p
e2; A2 ¼

r2

p2
e22; A3 ¼

1

p3
½�2r2e33 þ r3e222�

A4 ¼
1

p4
½3r2e44�2r3ðe332 þ e233Þ þ r4e2222�

A5 ¼
1

p5
½�4r2e55 þ r3ð3e442 þ 6e343 þ 3e244Þ

�2r4ðe3322 þ e2332 þ e2233Þ þ r5e22222�

A6 ¼
1

p6
½5r2e66�4r3ðe255 þ 3e354 þ 3e453 þ e552Þ

þ r4ð3e2244 þ 6e2343 þ 4e3333 þ 3e2442 þ 6e3432 þ 3e4422Þ
�2r5ðe22233 þ e22332 þ e23322 þ e33222 þ r6e222222Þ�

ð5:129Þ

where the argument (w1, w2) is omitted. In particular, for macroscopically isotropic

composites (5.127) becomes

l̂ ¼ 1þ 2rnþ 2rn
X1
k¼1

Aknk ð5:130Þ

5.7

Representative Cell

One of themost important notation of composites and porousmedia is the representa-
tive volumeelement (RVE)or representative cellalreadyused in thischapter.Onecangivea
vaguephysical definitionof this termas follows.RVEisapartofmaterialwhich is small

enoughfromamacroscopicpointofview that it canbe treatedasa typical elementof the

heterogeneous medium. On the other hand, it is sufficiently large in the microscopic

scale that it represents a typicalmicrostructure of thematerial under consideration. In

the present section following Ref. [91], we first give a rigorous definition of the repre-

sentative element and thendetermine itsminimal size.Thegeometrical interpretation

of the problem is shown in Figure 5.3. The large cell Q0 presented in Figure 5.3a is

replaced by a smaller one,Q (see Figure 5.3b) with three inclusions per periodic cell.

Note that Adler and co-workers [5,6] discussed questions of the reconstruction of

porous media by statistical data and a numerically constructed RVE.

Consider a two-dimensional two-component periodic composite medium made

from a collection of nonoverlapping identical circular disks embedded in an other-

wise uniform matrix. Let the inclusions have scalar conductivity l and be separated

by amatrix of unit conductivity. Let r¼ (l� 1)/(l + 1) be the contrast parameter. It is

established in Section 5.6.2 that the effective conductivity tensor L̂ has the form of a
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double series in the concentration of inclusions and on ‘‘basic elements’’ which

depend only on locations of the inclusions (see Eqs. (5.127) and (5.128). These basic

elements are written in terms of the Eisenstein series. Coefficients in the double

series depend on r. We say that two composites are equivalent if expansions of their

L̂ have the same basic elements. Therefore, we divide the set of the composites with

circular identical inclusions into classes of equivalence determined only by geomet-

rical structure of the composite. In particular, composites with the same locations of

inclusions but with different r belong to the same class of equivalence. Note that

composites belonging to a class of equivalence can have different L̂; and composites

from different classes can have the same L̂. Each composite material is represented

by a periodic cell. In each class of equivalence, we choose a composite having the

minimal size cell. This cell is called the representative cell of the considered class of

equivalent composite materials.

We propose a constructive algorithm to determine the representative cell for any

distribution of inclusions using only pure geometrical parameters.More precisely, at

the beginning, we calculate the generalized Eisenstein–Rayleigh sums (5.117)

depending on the centers of circular inclusions for given large cell. Then using

these sums, we construct the (minimal) representative cell, i.e. we calculate its

fundamental translation vectors and determine the positions of inclusions within

this cell.

Consider a large fundamental region Q0 constructed by the fundamental transla-

tion vectors v0
1 and v

0
2. LetQ

0 containN0 non-overlapping circular disksD0
k of radius

r with the centers a0k 2Q (k¼ 1, 2, . . ., N0). Let L̂
0
be the effective conductivity tensor

of the composite material represented by the region Q0 with inclusions D0
k. We are

interested in the following question. To replace Q0 by another small cell Q which

contains inclusions Dk ¼ fz2C : z�akj < jrg (k¼ 1, 2, . . ., N) and which has an

effective conductivity tensor L̂ close to L̂
0
. We assume that the concentration n of the

Fig. 5.3 Representative cells.
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inclusions in both materials is the same. Closeness is defined by the accuracy

O(nL+1) for the difference DL̂ ¼ L̂�L̂
0
with prescribed L. We say that Q is a repre-

sentative cell for the region Q0 with the accuracy O(nL+1) if DL̂ ¼ OðnLþ1Þ. We say

thatQ is the minimal representative cell for the regionQ0 ifQ is a representative cell

with minimal possible area |Q|. For brevity, we further call the minimal representa-

tive cell the representative cell. The existence of the representative cell is evident

since in the worst case one can take Q¼Q0.

We adopt the designations generalized Eisenstein–Rayleigh sums for the repre-

sentative cell. Consider Eq. (5.127) for the large cell Q0

L̂
0 ¼ ð1þ 2rnÞ 1 0

0 1

� �
þ 2rn

X1
k¼1

ReA0
k ImA0

k
ImA0

k C0
k

� �
nk ð5:131Þ

A0
k ¼ jQ 0jk

X
n1 ...np

BðkÞ
n1...np

en1 ...npðv0
1;v

0
2Þ ð5:132Þ

Note that the coefficients BðkÞ
n1...np have the same form in Eqs. (5.128) and (5.131). DL̂

is of orderO(nL+1) ifA0
k ¼ Ak for k¼ 1, 2, . . ., L� 1. Therefore, DL̂ is of orderO(nL+1)

if and only if

jQjken1...npðv1;v2Þ ¼ jQ 0jken1...npðv0
1;v

0
2Þ ð5:133Þ

for k¼ 1, 2, . . ., L� 1 and corresponding sets of the numbers n1, . . ., np. According to
our definition,Q is a representative cell for the regionQ0 with the accuracyO(nL+1) if
and only if the relations Eq. (5.132) are fulfilled.

One can consider Eq. (5.132) as a system of equations with respect to o1, o2, a1,
a2, . . ., aN including the unknown number N with the restriction |aj� am|� 2r
(j 6¼m). One can assume that one of the centers, say aN, lies at the origin, since

geometrically any cell is determined up to translation. The fundamental regionQ as

well as the translation vectors o1, o2 can be chosen in infinitely many ways [74]. For

any doubly periodic structure on the plane, it is always possible to construct such a

pair o1, o2 that o1> 0 and Imt> 0.

The area of Q is calculated by o1 and o2

jQj ¼ v2
1Imt ð5:134Þ

On the other hand, we also have jQ j ¼ Npr2

n
that yields the formula

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Npr2

nImt

r
ð5:135Þ

In order to construct the representative cell with the prescribed accuracyO(nL+1), we
propose to solve the system (5.132) with fixed L increasing the number of inclusions

in the cell N from 1 to N0. Then, N is fixed in each step of the study of Eq. (5.132).
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Applying Eqs. (5.119) and (5.133), we rewrite Eq. (5.132) in the form

ðImtÞken;...;npð1; tÞ ¼ jQ 0jken1;...;npðv0
1;v

0
2Þ; k ¼ 1; 2; . . .; L�1 ð5:136Þ

We can consider Eq. (5.135) as a system with respect to t, a1, a2, . . ., aN�1 (aN¼ 0)

with the restriction |aj� am|	 2r (j 6¼m). The right-hand part of Eq. (5.135) is known.

If we know a solution of Eq. (5.135), we can calculate w1 from Eq. (5.134).

It is also possible to state the problem of the representative cell with prescribed

form of the cell Q . Let us consider the case when Q is a rectangle. Then, t¼ ia,
where a is positive and Eq. (5.134) implies that

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Npr2

an

r
ð5:137Þ

Equations (5.135) become

aken1;...;npð1; iaÞ ¼ jQ 0jken1;...;npðv0
1;v

0
2Þ; k ¼ 1; 2; . . .; L�1 ð5:138Þ

Numerical examples of solution to Eqs. (5.135), (5.137) are presented in Ref. [91].

One can also find there a discussion devoted to other shapes of inclusions.

A spatial theory of the representative elements can also be constructed due to

Berdichevskij 3D analogs of the elliptic functions (see Remark 5.6.2).

5.8

Nonlinear Heat Conduction

In the general mathematical theory of the nonlinear behavior of materials, the

conductivity (for instance, electric) depends locally on the gradient of the potential.

However, in the thermal conductivity, we have another dependence. Namely, the

local coefficient depends on the potential, i.e. on the temperature distribution. Then,

Fourier’s law (5.1) becomes

q ¼ �lðTÞrT ð5:139Þ

This case is easier to study due to the transformation (5.1.3) from Ref. [16 Chapter V].

There is a wonderful result in the nonlinear homogenization theory due to Artola

and Duvaut [92] (see also Ref. [93]) devoted to homogenization of Eq. (5.138). It

follows from Ref. [92] that in order to obtain a formula for the effective conductivity,

it is sufficient to take a formula from linear theory with constant l and to substitute

l(T) instead of this constant. For instance, in the linear case, L̂ for laminates is

determined by Eqs. (5.44) and (5.52). Let the conductivities of the constituents

depend on T, i.e. lj¼lj(T) (j¼ 1, 2). Then, the effective conductivities in this

nonlinear case are exactly calculated by the same formulas (5.44) and (5.52) but

with replacing l̂ j and lj by the functions l̂ jðTÞ and lj(T).
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